





# Water Sensitive Urban Design in Townsville City

### Insights and lessons learned...

Chris Manning Townsville City Council

TOWNSVILLE CITY COUNCIL

## Why improve urban (storm)water quality? We all have an interest!

» Reduces impacts on natural values (MNES, MSES and MLES)

- Great Barrier Reef Marine Park and World Heritage Area
- Significant Wetlands such as RAMSAR listed or Wetland of National Significance
- Other locally significant waterways and natural areas
- » Reduces impacts on stormwater assets and infrastructure
  - State and Local assets
- » Provides amenity, promotes tourism and recreation opportunities and reduces community complaints



### What is Water Sensitive Urban Design?

- » A holistic approach to the planning, design, assessment, construction and maintenance of new or retrofitted urban development.
- » Promotes the integration of stormwater, water supply and sewage management within a development precinct.
- » Aims to minimise negative impacts on the natural water cycle and protect the health of aquatic ecosystems.
- » Provides amenity, livability and social outcomes.

Ref: Water Sensitive Urban Design Factsheet: Concepts and Terminology, Townsville City Council

### WSUD: Stormwater management Which measure and why?

| WSUD Measure Water           | Quality<br>Treatment | Peak Flow<br>Attenuation * | Reduction in<br>Runoff Volume * |
|------------------------------|----------------------|----------------------------|---------------------------------|
| Swales and buffer strips     | М                    | L                          | L                               |
| Bioretention Swales          | Н                    | М                          | L                               |
| Sedimentation basins         | М                    | М                          | L                               |
| Bioretention basins          | Н                    | М                          | L                               |
| Constructed wetlands         | Н                    | Н                          | L                               |
| Infiltration measures        | Н                    | Н                          | Н                               |
| Sand filters                 | М                    | L                          | L                               |
| Aquifer storage and recovery | Н                    | Н                          | Н                               |

### WSUD: Stormwater management Which measure and why?

| Particle Size<br>Grading |           | Treatment<br>Process       |           |             |             |               |
|--------------------------|-----------|----------------------------|-----------|-------------|-------------|---------------|
|                          | Visual    | Sediment                   | Organics  | Nutrients   | Metals      |               |
| Gross Solids             | 1         | 1                          | Î         |             |             | Screening     |
| > 5000 μm                | Litter    | Gravel                     | Plant     |             |             |               |
| Coarse- to Medium-       |           | Ī                          | Debris    |             |             | Sedimentation |
| 5000 μm – 125 μm         |           |                            |           | •           | <b>↑</b>    |               |
| Fine Particulates        |           | Silt                       |           | Particulato | Particulate | Enhanced      |
| 125 μm – 10 μm           |           | ₩                          |           | Particulate |             | Sedimentation |
| Very Fine/Colloidal      | Turbidity |                            |           |             |             | Adhesion and  |
| 10 μm – 0.45 μm          | +         |                            | Natural & |             | Colloidal   | Filtration    |
| Dissolved Particles      |           | Anthropogenic<br>Materials | Soluble   | *           | Biological  |               |
| < 0.45 μm                |           |                            |           | <b>\</b>    |             | Uptake        |

### Water Sensitive Urban Design in TSV Stormwater quality improvement measures

- » Swales
- » Bio-retention Swales
- » Sediment Basins
- » Bio-retention Basins
- » Constructed Stormwater Wetlands
- » Rainwater Tanks
- » Infiltration Measures
- » Sand Filters
- » Aquifer Storage and Recovery

### and more recently...

- » Street tree bio-retention
- » Public open space wicking beds



WATER SENSITIVE URBAN DESIGN FOR THE COASTAL DRY TROPICS (TOWNSVILLE) >> TECHNICAL DESIGN GUIDELINES FOR STORMWATER MANAGEMENT



### Water Sensitive Urban Design in TSV Bio-retention basins



### Water Sensitive Urban Design in TSV Constructed wetlands



### Water Sensitive Urban Design in TSV Early days...

### Site 1: Osterlund Place (2007)

Not free draining

Blocked with sediment (construction at 90%)

Sulfur smell

#### **Extensive Typha growth**

- Gross pollutant capture
- Slow flowing
- Claims of respiratory distress
- Potential flooding issues/

## Water Sensitive Urban Design in TSV Still early days...



TOWNSVILLE CITY COUNCIL

## Water Sensitive Urban Design in TSV Getting better...



## Water Sensitive Urban Design in TSV Challenges and learnings...

### **Biophysical / climatic / ecological**

- » Vegetation selection long dry period, soils, filter media
- » High intensity rainfall erosion issues, high flow bypass, asset size
- » Soils (sand, granite, sodic clays) erosion, vegetation viability
- » Filter media vegetation viability, infiltration rate, availability
- » Flat sites drainage, fall
- » Weeds out compete desired vegetation

## Water Sensitive Urban Design in TSV Challenges and learnings continued...

### **Institutional / Social**

- » Interpretation of WSUD principles and practices
- » Capacity and capability
- Process breakdowns in planning, design, assessment, construction or maintenance stages
- » Development phasing and asset protection
- » High domestic water use dry season baseflows
- » Large assets (wetland / bio-retention basins) maintenance
- » Perception that WSUD does not work in Townsville!

## Water Sensitive Urban Design in TSV In conclusion...

- Soils: treat or remediate as required.
- Rainfall / climate: size asset(s) appropriately
- Vegetation: fit for purpose, local endemic species
- Know your pollutants/issues: treatment train of several different measures instead of large end of line assets.
- Protect your asset during construction: post remediation is more expensive
- Ensure agreement on issues and possible solutions first
- Don't cut corners: ensure good planning, design, construction, establishment and maintenance.

### **Questions?**



Chris Manning Email: <u>chris.manning@townsville.qld.gov,au</u>

TOWNSVILLE CITY COUNCIL