

Bioremediation of wastewater using freshwater macroalgae

The integrated production of macroalgae in wastewater : land-based

Bioremediation of treated municipal wastewater using freshwater macroalgae

- Globally > 181 km³ (181 million ML) of municipal waste water is treated annually¹
- < 13% is reused with > 87% discharged to the environment
- Australia ~ 256 L per person per day > 2000 GL (2 million ML)
- Residual concentration of nitrogen > 3mg.L⁻¹ and phosphorous > 0.5 mg.L⁻¹
- Residual is expensive to treat on a per unit basis compared to bulk sewage

- Residual nitrogen and phosphorous is an ideal resource for freshwater macroalgae
- The cultivation of freshwater macroalgae is effective for the capture and reuse of nutrients

Rhizoclonium, Cladophora, Hydrodictyon, Stigeoclonium, Oedogonium

- Cosmopolitan
- Diverse
- Robust¹
- Highly competitive¹
- Dominant¹
- High protein content²
- High energy content²

• TP concentration ~ 8.3 mg.L⁻¹

Cleveland Bay MWWTP

	1	2	3	4	5	6	7
Effluent	Raw sewage	Raw sewage + returns	Primary effluent	Secondary effluent	RST return	DAF return	Centrate return
Flow (ML/d)	29.0	29.8	29.6	29.0	0.2	0.4	0.2
Mass (kg/d)							
TN	1450	1632	1437	116	10	6	166
ТР	232	247	215	23	2	3	10
Concentration	(mg/L)					17	
TN	50	55	49	4	57	15	817
ТР	8.0	8.3	7.3	0.8	9.5	7.8	52
TN:TP	6:1	7:1	7:1	5:1	6:1	2:1	16:1
Mass balance	(%)						
Flow	100	103	102	100	1	1	1
TN	100	113	99	8	1	0	11
ТР	100	106	93	10	1	1	4

Cleveland Bay MWWTP

Month

- 5
- TP concentration 0.32 \pm 0.16 mg.L⁻¹

- TP concentration $0.32 \pm 0.16 \text{ mg}.\text{L}^{-1}$

- 3 Ha site with a flow of 1.6 ML.day⁻¹ (5.6 day RT)
- Removal of ~ 95% DIN and 75% TP
- Productivity 18.8 g (dw) m⁻².day⁻¹
- Equivalent of 66 tonne (dw) Ha⁻¹.yr⁻¹

Broadening the model to treat agricultural runoff using freshwater macroalgae

- 1° filtration to remove suspended solids
- Bioremediation to remove N and P
- Compliance with net zero discharge
- Discharge / reuse of waste water

Mean (+ S.E.) concentration of dissolved inorganic nitrogen (DIN) in water samples

Agricultural runoff - initial concentrations of DIN from 0 – 20 mg.L $^{-1}$ with diuron at 10 $\mu g.L^{-1}$

- Year-round treatment of water after it leaves the farm
- Provide primary treatment of dissolved inorganic nutrients
- Complements wetlands
 - Pre or post wetland treatment

- Year-round treatment of water after it leaves the farm
- Provide primary treatment of dissolved inorganic nutrients
- Complements wetlands
 - Pre or post wetland treatment

- Year-round treatment of water after it leaves the farm
- Provide primary treatment of dissolved inorganic nutrients
- Complements wetlands
 - Pre or post wetland treatment

Deriving value from biomass

Biochemical profile - Oedogonium

• Protein	23.1 % (sum of total amino acids)				
Essential amino acids	10.0 % (total EEA)				
• Lipid	10.4 % (total lipid)				
Total fatty acids	6.4 %				
• PUFA	4.6%				
Dietary fibre	34.5 % (insoluble + soluble)				
• Ash	10.1 %				
Carbon	42.9 %				
 Hydrogen 	6.4 %				
• Oxygen	36.7 %				
Nitrogen	5.1 %				
• Sulphur	0.27 %				
Phosphorous	1.07 %				

• HHV 19 MJ.kg⁻¹

Deriving value from biomass – whole biomass

Animal feeds and feed supplements (quality and quantity of amino acids = lupins)

Summary

- Transparent accounting of nutrients and carbon
- Delivers biomass as a product
- Value-adding options diversify with scale of production