

# Aquatic Conservation Assessment using AquaBAMM for the riverine and non-riverine wetlands of the Eastern Gulf of Carpentaria

Flora, Fauna and Ecology Expert Panel Report Version 1.1



Prepared by: Biodiversity Assessment, Conservation and Biodiversity Strategy, Department of Environment and Science.

#### © State of Queensland, 2018.

The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence.



Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms.

You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. For more information on this licence, visit http://creativecommons.org/licenses/by/3.0/au/deed.en

#### Disclaimer

This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The department holds no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy.

If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5470.

This publication can be made available in an alternative format (e.g. large print or audiotape) on request for people with vision impairment; phone +61 7 3170 5470 or email library@ehp.qld.gov.au>.

#### Citation

DES. 2018. Aquatic Conservation Assessment using AquaBAMM for the riverine and non-riverine wetlands of the Eastern Gulf of Carpentaria: Flora, Fauna and Ecology Expert Panel Report, Version 1.1. Department of Environment and Science, Queensland Government.

#### Acknowledgements

This report was prepared by Mark Kelton, Simon Goudkamp, Shane Chemello, David McFarland, Courtney Duncan and Ralph Trancoso. Special area decisions were refined by Jim Tait. The authors wish to thank all the experts who gave their time and knowledge at the expert panel workshops.

Cover Photo: Wetland near the Langdon river in the Gilbert river catchment. (S. Chemello, Dept. Environment and Science, 2017)

June, 2018

## Contents

| 1 | Intr         | ntroduction  |                                                                                                                                    |     |  |  |
|---|--------------|--------------|------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
| 2 | Met          | thod.        |                                                                                                                                    | 8   |  |  |
|   | 2.1          | Stu          | dy Area                                                                                                                            | 8   |  |  |
|   | 2.2          | Pan          | el composition                                                                                                                     | 8   |  |  |
|   | 2.3          | Wo           | rkshop format                                                                                                                      | 10  |  |  |
| 3 | Floi         | ra           |                                                                                                                                    | 11  |  |  |
|   | 3.1          | Exo          | tic flora                                                                                                                          | 11  |  |  |
|   | 3.2          | Flor         | a species richness                                                                                                                 | 13  |  |  |
|   | 3.3          | Nea          | ar threatened and threatened flora                                                                                                 | 29  |  |  |
|   | 3.4          | Prio         | prity flora                                                                                                                        | 30  |  |  |
| 4 | Fau          | ına          |                                                                                                                                    | 33  |  |  |
|   | 4.1          | Exo          | tic fauna                                                                                                                          | 33  |  |  |
|   | 4.2          | Fau          | na species richness                                                                                                                | 34  |  |  |
|   | 4.2.         | .1           | Amphibian richness                                                                                                                 | 34  |  |  |
|   | 4.2.         | .2           | Fish richness                                                                                                                      | 37  |  |  |
|   | 4.2.         | .3           | Reptile richness                                                                                                                   | 41  |  |  |
|   | 4.2.         | .4           | Waterbird richness                                                                                                                 | 42  |  |  |
|   | 4.2.         | .5           | Mammal richness                                                                                                                    | 47  |  |  |
|   | 4.2.         | .6           | Macroinvertebrate richness                                                                                                         | 47  |  |  |
|   | 4.3          | Nea          | ar threatened and threatened fauna                                                                                                 | 48  |  |  |
|   | 4.4          | Prio         | prity fauna                                                                                                                        | 50  |  |  |
|   | 4.4.         | .1           | Priority species                                                                                                                   | 50  |  |  |
|   | 4.4.         | .2           | Migratory species                                                                                                                  | 53  |  |  |
| 5 | Spe          | ecial        | Features                                                                                                                           | 55  |  |  |
|   | 5.1          | Spe          | cial Features                                                                                                                      | 55  |  |  |
| 6 | Cor          | nnect        | ivity                                                                                                                              | 138 |  |  |
|   | 6.1.         | .1           | Importance of connectivity                                                                                                         | 138 |  |  |
|   | 6.1.         | .2           | Applying principles for measuring connectivity                                                                                     | 138 |  |  |
|   | 6.1.         | .3           | Fish passage — Measure 7.1.2                                                                                                       | 138 |  |  |
|   | 6.1.         | .4           | Connectivity between freshwater wetlands and groundwater - Measure 7.2.1                                                           | 139 |  |  |
|   | 6.1.<br>sigr | .5<br>nifica | Contribution of the spatial unit to the maintenance of estuarine and marine ecosystems with nt biodiversity values - Measure 7.5.1 | 139 |  |  |
| 7 | Stra         | atifica      | ation                                                                                                                              | 140 |  |  |
| 8 | Spr          | ings.        |                                                                                                                                    | 141 |  |  |
| 9 | Dis          | cussi        | ion                                                                                                                                | 142 |  |  |
|   | 9.1          | Eco          | logy                                                                                                                               | 142 |  |  |
|   | 9.1.         | .1           | Pattern                                                                                                                            | 142 |  |  |

| 9.1  | .2   | Process                                                                                       | 142 |
|------|------|-----------------------------------------------------------------------------------------------|-----|
| 9.2  | FI   | ora                                                                                           | 143 |
| 9.3  | Fa   | auna                                                                                          | 143 |
| 9.4  | ΤI   | nreats                                                                                        | 144 |
| 9.4  | .1   | Current                                                                                       | 144 |
| 9.4  | .2   | Potential                                                                                     | 144 |
| 10 C | Con  | straints                                                                                      | 146 |
| 11 F | Rec  | ommendations                                                                                  | 147 |
| 11.1 |      | General                                                                                       | 147 |
| 11.2 |      | Methodology                                                                                   | 147 |
| 12 R | Refe | erences                                                                                       | 148 |
| 13 A | ٨pp  | endix I. Expert Panel Terms of Reference                                                      | 153 |
| 13.1 |      | Aquatic flora expert panel                                                                    | 153 |
| 13.2 |      | Aquatic fauna expert panel                                                                    | 153 |
| 13.3 |      | Aquatic ecology expert panel                                                                  | 153 |
| 14 A | ١pp  | endix II - Expert Panel Definitions                                                           | 155 |
| 14.1 |      | Expert Panel Definitions (Fauna)                                                              | 155 |
| 14.  | 1.1  | Wetland indicator species                                                                     | 155 |
| 14.  | 1.2  | Waterbirds                                                                                    | 155 |
| 14.  | 1.3  | Migratory Species                                                                             | 155 |
| 14.  | 1.4  | Priority Species                                                                              | 155 |
| 14.2 |      | Expert Panel Definitions (Flora)                                                              | 155 |
| 14.3 | 2.1  | Wetland indicator Species                                                                     | 155 |
| 14.: | 2.2  | Aquatic Species (QLD Herbarium definition)                                                    | 156 |
| 14.3 | 2.3  | Semi-aquatic Species (QLD Herbarium definition)                                               | 156 |
| 14.: | 2.4  | Exotic Flora                                                                                  | 156 |
| 14.: | 2.5  | Priority Species                                                                              | 156 |
| 14.3 |      | Expert Panel Derived Measures                                                                 | 156 |
| 15 A | ٩q   | endix III - Criteria, indicators and measures for the Eastern Gulf of Carpentaria assessments | 157 |

## Tables

| 8  |
|----|
| 11 |
| 13 |
| 29 |
|    |
| 33 |
| 34 |
| 37 |
| 41 |
| 42 |
|    |

| Table 11. Aquatic dependent n      | ative mammal taxa                        | 47  |
|------------------------------------|------------------------------------------|-----|
| Table 12. Aquatic dependent n      | ear threatened and threatened fauna taxa | 48  |
| Table 13. Aquatic dependent p      | riority fauna taxa                       | 50  |
| Table 14. Migratory taxa listed    | on international agreements              | 53  |
| Table 15. Non riverine special     | features and their values                | 56  |
| Table 16. Riverine special feature | ures and their values                    | 107 |

## **Figures**

### No table of figures entries found.

Nb. The report should be read in conjunction with the accompanying Summary Report – Aquatic Conservation Assessment using AquaBAMM for the riverine and non-riverine wetlands of the Eastern Gulf of Carpentaria: Summary Report, Version 1.1 (DES 2018).

## Acronyms and abbreviations

| ACA      | Aquatic Conservation Assessment                               |
|----------|---------------------------------------------------------------|
| AquaBAMM | Aquatic Biodiversity Assessment and Mapping Methodology       |
| ASL      | Above Sea Level                                               |
| BAMM     | Biodiversity Assessment and Mapping Methodology               |
| BPA      | Biodiversity Planning Assessment                              |
| CAMBA    | China–Australia Migratory Bird Agreement                      |
| CIM      | Criteria, indicators and measures (used in AquaBAMM)          |
| CYP      | Cape York Peninsula bioregion                                 |
| DIWA     | Directory of Important Wetlands in Australia                  |
| EGoC     | Eastern Gulf of Carpentaria                                   |
| DERM     | Department of Environment and Heritage Protection             |
| DES      | Department of Environment and Science                         |
| EIU      | Einasleigh Uplands bioregion                                  |
| EPBC     | Environment Protection and Biodiversity Conservation Act 1999 |
| GUP      | Gulf Plains bioregion                                         |
| IBRA     | Interim Biogeographic Regionalisation for Australia           |
| JAMBA    | Japan–Australia Migratory Bird Agreement                      |
| MDIA     | Mareeba-Dimbulah Irrigation Area                              |
| MGD      | Mitchell Grass Downs                                          |
| NCA      | Nature Conservation Act 1992                                  |
| NP       | National Park                                                 |
| QWS      | Queensland Wetland System                                     |
| Ramsar   | Ramsar Convention on Wetlands                                 |
| RE       | Regional Ecosystem                                            |
| ROKAMBA  | Republic of Korea–Australia Migratory Bird Agreement          |
| SOR      | State of the Rivers                                           |
| WET      | Wet Tropics bioregion                                         |

## 1 Introduction

The Department of Environment and Science (DES) has undertaken a series of aquatic conservation assessments for the freshwater wetlands within the Mitchell, Staaten, Norman, Gilbert, and Flinders hydrological basins. Aquatic conservation assessments involve a non-social, non-economic and tenure independent assessment of wetland conservation values at the individual wetland scale. They are based on the Aquatic Biodiversity Assessment and Mapping Method (AquaBAMM; Clayton et al. 2006) and incorporate a comprehensive set of criteria, indicators and measures founded upon a wide body of national and international literature.

The AquaBAMM uses expert knowledge to acquire data for a number of measures within selected criteria (Clayton et al. 2006). This data is drawn from expert panel workshops comprised of individuals with expertise in the local aquatic dependent flora and fauna, and non-riverine and riverine wetland ecology including fish, macro invertebrates, water quality, hydrology, geomorphology and vegetation.

Three expert panel workshops (flora, fauna, and ecology) were held in Cairns from 5 to 11 April, 2017 and built on the outcomes from similar workshops held for the Flinders, Norman and Gilbert basins in 2010.

This report describes the findings and recommendations from the expert panel process completed for the Mitchell, Staaten, Norman, Gilbert, and Flinders (Eastern Gulf of Carpentaria) assessments. Terms of Reference for the expert panel workshops are provided in Appendix I. Expert Panel Terms of Reference.

The overall study area is referred to in this report as the Eastern Gulf of Carpentaria (EGoC).

The report should be read in conjunction with the accompanying Summary Report – Aquatic Conservation Assessment using AquaBAMM for the riverine and non-riverine wetlands of the Eastern Gulf of Carpentaria Summary Report - Version 1.1 (DES 2018).

## 2 Method

### 2.1 Study Area

The Eastern Gulf of Carpentaria study areas cover an area of 302,961 km<sup>2</sup> and include the Mitchell, Staaten, Norman, Gilbert, and Flinders hydrological basins. Each basin constitutes a separate study area. Separate, standalone assessments have been completed for each study area. Summary descriptions of the geographic, geomorphic and ecologic characteristics of the study areas can be found in the accompanying Summary Report (i.e. Aquatic Conservation Assessment using AquaBAMM for the riverine and non-riverine wetlands of the Eastern Gulf of Carpentaria Summary Report - Version 1.1 (DES 2018)).

### 2.2 Panel composition

The expert panel for the Eastern Gulf of Carpentaria assessments was comprised of the persons listed in Table 1. It included individuals with expertise in the local aquatic dependent flora and fauna, and non-riverine and riverine wetland ecology including fish, macro invertebrates, water quality, hydrology, geomorphology and vegetation. Members who were unavailable to attend the workshop were consulted prior to, or after, the workshop.

Prior to attending the panel all participants were provided with background material including a Terms of Reference (Appendix I. Expert Panel Terms of Reference), relevant definitions (Appendix II - Expert Panel Definitions), and taxon lists for flora and fauna recorded within each study area. Organisation and technical support for the panels was provided by Mark Kelton, Shane Chemello, Simon Goudkamp, Courtney Duncan and Steven Howell.

| Name                | Organisation                                                                         | Expertise              | Flora panel | Fauna panel        | Ecology panel |  |  |  |  |  |
|---------------------|--------------------------------------------------------------------------------------|------------------------|-------------|--------------------|---------------|--|--|--|--|--|
| Expert panel – 2017 | Expert panel – 2017                                                                  |                        |             |                    |               |  |  |  |  |  |
| Chris Appelman      | Principal Botanist,<br>Department of Science<br>Information Technology<br>Innovation | Botanist               | Attended    |                    | Attended      |  |  |  |  |  |
| Dr Satish Choy      | Retired                                                                              | Aquatic ecologist      |             |                    | Attended      |  |  |  |  |  |
| Nick Cuff           | Senior Botanist, Department<br>of Environment and Natural<br>Resources               | Botanist               | Attended    |                    |               |  |  |  |  |  |
| Dr Brendan Ebner    | TropWater, James Cook<br>University                                                  | Aquatic ecologist      |             | Attended           |               |  |  |  |  |  |
| Peter Elliot        | Senior Project Officer,<br>Department of Agriculture<br>and Fisheries                | Landscape<br>ecologist |             |                    | Attended      |  |  |  |  |  |
| Alastair Freeman    | Senior Technical Officer,<br>Department of Environment<br>and Science                | Zoologist              |             | Out-of-<br>session |               |  |  |  |  |  |
| Dr Roger Jaensch    | Consultant, Jaensch<br>Ornithology & Conservation                                    | Waterbird ecologist    |             | Out-of-<br>session |               |  |  |  |  |  |
| Dr Col Limpus       | Chief Scientist, Department of Environment and Science                               | Aquatic ecologist      |             | Out-of-<br>session |               |  |  |  |  |  |
| Dr David McFarland  | Senior Zoologist,<br>Department of Environment<br>and Science                        | Zoologist              |             | Out-of-<br>session |               |  |  |  |  |  |

#### Table 1. Composition and details of the expert panel

| Name                | Organisation                                                                               | Expertise                                                          | Flora panel                         | Fauna panel | Ecology panel |
|---------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------|-------------|---------------|
| Gethin Morgan       | President, Magnetic Island<br>Nature Association                                           | Landscape<br>ecologist                                             |                                     |             | Attended      |
| Dr Jeff Shellberg   | Griffith University                                                                        | Fluvial<br>geomorphologist,<br>aquatic ecologist                   |                                     |             | Attended      |
| Jim Tait            | Consultant,<br>Econcern Environmental<br>Consulting                                        | Aquatic ecologist                                                  |                                     |             | Attended      |
| David Stewart       | Senior Conservation Officer,<br>Department of Environment<br>and Science                   | Zoologist                                                          |                                     | Attended    |               |
| Bruce Wannan        | Senior Planning Officer,<br>Department of Environment<br>and Science                       | Landscape<br>ecologist                                             | Attended                            |             | Attended      |
| Experts Panel – 201 | 0                                                                                          |                                                                    |                                     |             |               |
| Chris Appleman      | Principal Botanist,<br>Department of Environment<br>and Resource Management                | Flora, aquatic<br>ecology                                          | Contributed post-panel              |             |               |
| Dr Damien Burrows   | Aquatic ecologist, Australian<br>Centre for Tropical<br>Freshwater Research                | Aquatic ecology and water quality                                  |                                     | Attended    |               |
| Jason Carter        | Business and Natural<br>Resources Manager,<br>Alluvium Consulting Pty Ltd                  | River and wetland management                                       |                                     | Attended    |               |
| Dr Satish Choy      | Principal Scientist<br>Department of Natural<br>Resources and water                        | Aquatic ecology,<br>water quality,<br>macroinvertebrates           |                                     | Attended    |               |
| Dr Niall Connolly   | Principal Conservation<br>Officer, Department of<br>Environment and Resource<br>Management | Biodiversity<br>planning - aquatic<br>ecology and water<br>quality | Attended                            | Attended    | Attended      |
| Mike Digby          | Coordinator, Regional<br>Mapping Services, Northern<br>Gulf Resource Management<br>Group   | Aquatic ecology,<br>geographic<br>information systems              | Attended                            |             | Attended      |
| Hans Dillewaard     | Principal botanist,<br>Department of Environment<br>and Resource Management                | Mapping, flora,<br>aquatic ecology                                 | Out-of-<br>session                  |             |               |
| Dr Peter Driscoll   | Consultant                                                                                 | Birds                                                              |                                     | Attended    |               |
| David Hinchley      | Land and Sea Program<br>Manager, Carpentaria Land<br>Council Aboriginal<br>Corporation     |                                                                    |                                     |             | Attended      |
| Alf Hogan           | Alf Hogan and Associates                                                                   | Fish ecologist                                                     |                                     | Attended    |               |
| Dr Christina Howley | Cape York Marine Advisory<br>Group (CYMAG)<br>Environmental Inc.                           | Flora, aquatic<br>ecology                                          | Sent draft<br>report for<br>comment |             |               |

| Name            | Organisation                                                                                        | Expertise                                                               | Flora panel        | Fauna panel        | Ecology panel |
|-----------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------|--------------------|---------------|
|                 |                                                                                                     |                                                                         | and<br>endorsement |                    |               |
| Jeff Johnson    | Queensland Museum                                                                                   | Freshwater and estuarine fish                                           |                    | Out-of-<br>session |               |
| Dr Rob Kenyon   | Commonwealth Scientific<br>and Industrial Research<br>Organisation (CSIRO)                          | Prawn ecology,<br>water quality                                         |                    | Attended           |               |
| Warren Lee Long | Wetlands International                                                                              | Wetland ecology,<br>catchment, coastal<br>and marine zone<br>management | Attended           |                    | Attended      |
| Jaye Lobegeiger | Senior Scientist, Department<br>of Environment and<br>Resource Management                           |                                                                         |                    |                    | Attended      |
| Keith McDonald  | Principal Technical Officer<br>(threatened species),<br>Environmental Protection<br>Agency          | Tropical ecology<br>and conservation                                    |                    | Out-of-<br>session |               |
| Gethin Morgan   | Principal Biodiversity<br>Planning Officer, Department<br>of Environment and<br>Resource Management | Landscape ecology                                                       | Attended           |                    | Attended      |
| Tony Morrison   | Principal Planning Officer,<br>Department of Environment<br>and Resource Management                 | Aquatic and<br>landscape ecology                                        | Attended           |                    | Attended      |
| Malcolm Pearce  | Senior Fisheries Biologist,<br>Department of Employment,<br>Economic Development and<br>Innovation  | Fish                                                                    |                    | Attended           |               |
| Colton Perna    | PhD Candidate, James Cook<br>University                                                             | Freshwater<br>Ecologist                                                 |                    |                    | Attended      |
| Bruce Wannan    | Principal Biodiversity<br>Planning Officer, Department<br>of Environment and<br>Resource Management | Tropical flora and<br>conservation<br>planning                          | Attended           |                    | Attended      |
| Gary Wilson     | Technical Officer,<br>Department of Environment<br>and Resource Management                          | Fauna ecologist                                                         |                    | Attended           |               |

### 2.3 Workshop format

Three expert panel workshops were held in Cairns during April, 2017. The flora panel was held 5 to 6 April, the fauna panel 6 to 7 April, and the ecology panel 10 to 11 April. These workshops built on the outcomes from similar workshops held for the Flinders, Norman and Gilbert basins in 2010 (unpublished). The workshops involved a review and update of the 2010 results and the development of new results for the Staaten and Mitchell basins.

The workshops used ArcGIS Desktop software to display datasets, such as species sightings records and background topographic data, to help identify species, processes, and features of interest. Where possible, region specific data were sourced from technical reports and scietific publications.

## 3 Flora

### 3.1 Exotic flora

Exotic flora are plants that cause, or have the potential to cause, significant detrimental impact on natural systems within a non-riverine, riverine landscape. The panel recommended that only exotic plants that cause, or have the potential to cause, significant detrimental impact on natural systems within a riverine or non-riverine landscape be used.

The panel identified 29 exotic flora taxa relevant to the riverine and non-riverine wetlands of the study areas (Table 2).

Pest distribution (species occurrence) maps produced by Biosecurity Queensland (Department of Agriculture and Fisheries) and point records for the listed species were used to pinpoint spatial units containing exotic flora species to calculate scores for the AquaBAMM measures 1.1.2 (Presence of exotic aquatic and semi-aquatic plants within the wetland) and 2.1.1 (Presence of exotic terrestrial plants in the assessment unit).

The panel also highlighted abundance and degree of infestation as important factors in determining the overall impact of exotic species on wetland ecosystems. The AquaBAMM project team is currently exploring the incorporation of abundance and degree of infestation into future assessments.

#### Table 2. Exotic flora taxa impacting study area wetland values

| Scientific Name                           | Common Name             | R <sup>1</sup> | NR <sup>1</sup> | M1.1.2 | M2.1.1 |
|-------------------------------------------|-------------------------|----------------|-----------------|--------|--------|
| Alternanthera ficoidea                    |                         | Y              | Y               |        | Y      |
| Azadirachta indica                        | Neem tree               | Y              | Y               |        | Υ      |
| Calotropis procera                        | Captain Cook tree       | Y              |                 |        | Υ      |
| Cascabela thevetia                        | yellow oleander         | Y              | Y               |        | Υ      |
| Cryptostegia grandiflora                  | rubber vine             | Y              | Y               |        | Υ      |
| Cyperus eragrostis                        |                         | Y              | Y               | Y      |        |
| Cyperus esculentus                        | yellow nutgrass         | Y              | Y               | Y      |        |
| Echinochloa colona                        | awnless barnyard grass  | Y              | Y               | Y      |        |
| Echinochloa crus-galli                    | barnyard grass          | Y              | Y               | Y      |        |
| Echinochloa polystachya cv. Amity         |                         | Y              | Y               | Y      |        |
| Eichhornia crassipes                      | water hyacinth          | Y              | Y               | Y      |        |
| Hymenachne amplexicaulis cv. Olive        |                         | Y              | Y               | Y      |        |
| Jatropha gossypiifolia                    | bellyache bush          | Y              | Y               |        | Y      |
| Leucaena leucocephala subsp. glabrata     | Leucaena                | Y              | Y               |        | Y      |
| Leucaena leucocephala subsp. leucocephala | Leucaena                | Y              | Y               |        | Y      |
| Mesosphaerum suaveolens                   |                         | Y              | Y               |        | Y      |
| Myriophyllum aquaticum                    | Brazilian water milfoil | Y              | Y               | Y      |        |
| Parkinsonia aculeata                      | parkinsonia             | Y              | Y               |        | Y      |
| Prosopis glandulosa var. glandulosa       |                         | Y              | Y               |        | Y      |

| Scientific Name                       | Common Name        | R <sup>1</sup> | NR <sup>1</sup> | M1.1.2 | M2.1.1 |
|---------------------------------------|--------------------|----------------|-----------------|--------|--------|
| Prosopis pallida                      | mesquite           | Y              | Y               |        | Υ      |
| Ricinus communis                      | castor oil bush    | Y              | Y               |        | Υ      |
| Salvinia molesta                      | salvinia           | Y              | Y               | Y      |        |
| Senna obtusifolia                     |                    | Y              | Y               |        | Y      |
| Senna occidentalis                    | coffee senna       | Y              | Y               |        | Y      |
| Sida rhombifolia                      | Paddy's lucerne    |                | Y               |        | Y      |
| Spathodea campanulata subsp. nilotica | african tulip tree | Y              | Y               |        | Y      |
| Urochloa mutica                       |                    | Y              |                 | Y      |        |
| Xanthium occidentale                  |                    | Y              | Y               |        | Y      |
| Ziziphus mauritiana                   | Indian jujube      | Y              | Y               |        | Y      |

 $^{1}$  R = Riverine, NR = Non-riverine.

### 3.2 Flora species richness

Flora species richness (total number of species) was calculated using wetland indicator species. The panel defined a 'wetland indicator species' to mean:

Species that are adapted to and dependent on living in wet conditions for at least part of their life and are found either within or immediately adjoining a riverine, non-riverine or estuarine wetland.

When applied to flora species this definition extends beyond the more traditional definition of submerged and floating aquatic plants as it includes plants inhabiting the littoral zone (water's edge) and plants that usually have 'wet feet' on the toe of the bank. This meaning was chosen because it was considered to best capture the intent of the AquaBAMM measure of species richness (M3.1.5). The indicator is a measure of floristic richness of a particular spatial unit's aquatic environment, and hence, a broad definition will better depict the flora richness value at a given location.

The panel identified 465 flora wetland indicator species relevant to the riverine and non-riverine wetlands of the study areas (Table 3). Taxa were accessed from the corporate databases of WildNet and Herbrecs and from panel member records.

Point records for the listed species were used to a calculate wetland flora indicator species richness scores for the AquaBAMM measure 3.1.5 (Richness of native aquatic plants).

| Scientific Name            | Common Name         | R <sup>1</sup> | NR <sup>1</sup> | Panel Comments                                            |
|----------------------------|---------------------|----------------|-----------------|-----------------------------------------------------------|
| Abildgaardia ovata         |                     |                | Y               |                                                           |
| Abildgaardia vaginata      |                     |                | Y               |                                                           |
| Acacia salicina            | doolan              | Y              |                 |                                                           |
| Acacia stenophylla         | belalie             | Y              | Y               |                                                           |
| Acmena smithii             | lillypilly satinash | Y              |                 |                                                           |
| Acrostichum speciosum      | mangrove fern       | Y              | Y               | Tends to grow on soda springs.<br>Geographically isolated |
| Aeschynomene indica        | budda pea           |                | Y               |                                                           |
| Alternanthera denticulata  | lesser joyweed      | Y              |                 |                                                           |
| Alternanthera nana         | hairy joyweed       | Y              |                 |                                                           |
| Alternanthera nodiflora    | joyweed             | Y              |                 |                                                           |
| Ammannia multiflora        | jerry-jerry         | Y              | Y               |                                                           |
| Aphananthe philippinensis  |                     | Y              |                 |                                                           |
| Aponogeton queenslandicus  |                     | Y              | Y               |                                                           |
| Aponogeton vanbruggenii    |                     | Y              | Y               |                                                           |
| Archontophoenix alexandrae | Alexandra palm      |                | Y               |                                                           |
| Arthropodium strictum      |                     | Y              | Y               |                                                           |
| Arthrostylis aphylla       |                     |                | Y               |                                                           |
| Avicennia marina           |                     | Y              |                 |                                                           |
| Azolla pinnata             | ferny azolla        | Y              | Y               |                                                           |

#### Table 3. Aquatic dependent native flora taxa

| Scientific Name                                   | Common Name                   | R <sup>1</sup> | NR <sup>1</sup> | Panel Comments   |
|---------------------------------------------------|-------------------------------|----------------|-----------------|------------------|
| Bacopa floribunda                                 |                               | Y              | Y               |                  |
| Bacopa monnieri                                   |                               | Y              | Y               |                  |
| Banksia robur                                     | broad-leaved banksia          |                | Y               |                  |
| Baumea juncea                                     | bare twigrush                 | Y              | Y               |                  |
| Baumea rubiginosa                                 | soft twigrush                 |                | Y               |                  |
| Bergia ammannioides                               |                               | Y              | Y               | No valid records |
| Bergia pedicellaris                               |                               |                | Y               |                  |
| Bergia pusilla                                    |                               |                | Y               |                  |
| Bergia trimera                                    |                               | Y              | Y               |                  |
| Blechnum cartilagineum                            | gristle fern                  | Y              |                 |                  |
| Blyxa aubertii                                    |                               | Y              |                 |                  |
| Blyxa octandra                                    |                               | Y              |                 | No valid records |
| Bruguiera gymnorhiza                              | large-fruited orange mangrove | Y              |                 | No valid records |
| Bulbostylis barbata                               |                               |                | Y               |                  |
| Bulbostylis densa                                 |                               | Y              | Y               |                  |
| Bulbostylis pyriformis                            |                               | Y              | Y               |                  |
| Byblis liniflora                                  |                               |                | Y               |                  |
| Caesalpinia hymenocarpa                           |                               | Y              |                 |                  |
| Caldesia acanthocarpa                             |                               | Y              | Y               |                  |
| Caldesia oligococca                               |                               |                | Y               |                  |
| Carex maculata                                    |                               | Y              | Y               |                  |
| Cartonema brachyantherum                          |                               |                | Y               |                  |
| Casuarina cunninghamiana                          |                               | Y              |                 |                  |
| Casuarina cunninghamiana subsp.<br>cunninghamiana |                               | Y              |                 |                  |
| Cathormion umbellatum subsp. moniliforme          |                               | Y              | Y               |                  |
| Cathormion umbellatum subsp. umbellatum           |                               | Y              | Y               |                  |
| Cenchrus purpurascens                             |                               |                | Y               |                  |
| Centella asiatica                                 |                               | Y              | Y               |                  |
| Centipeda borealis                                |                               |                | Y               |                  |

| Scientific Name                | Common Name       | R <sup>1</sup> | NR <sup>1</sup> | Panel Comments |
|--------------------------------|-------------------|----------------|-----------------|----------------|
| Centipeda minima               |                   |                | Y               |                |
| Centrolepis banksii            |                   | Y              | Y               |                |
| Centrolepis exserta            |                   | Y              | Y               |                |
| Ceratophyllum demersum         | hornwort          | Y              |                 |                |
| Ceratopteris thalictroides     |                   | Y              | Y               |                |
| Chenopodium auricomum          |                   |                | Y               |                |
| Chorizema parviflorum          | eastern flame pea | Y              |                 |                |
| Christella dentata             | creek fern        | Y              |                 |                |
| Commelina agrostophylla        |                   |                | Y               |                |
| Commelina diffusa              | wandering jew     | Y              |                 |                |
| Commersonia bartramia          | brown kurrajong   | Y              |                 |                |
| Corymbia tessellaris           | Moreton Bay ash   | Y              |                 |                |
| Corypha utan                   |                   | Y              | Y               |                |
| Crinum flaccidum               | Murray lily       | Y              | Y               |                |
| Crinum pedunculatum            | river lily        | Y              | Y               |                |
| Cryptocarya triplinervis       |                   | Y              |                 |                |
| Cyanotis axillaris             |                   |                | Y               |                |
| Cyathea cooperi                |                   | Y              |                 |                |
| Cyclosorus interruptus         |                   |                | Y               |                |
| Cycnogeton dubius              |                   | Y              | Y               |                |
| Cycnogeton multifructus        |                   | Y              | Y               |                |
| Cycnogeton procerus            |                   | Y              | Y               |                |
| Cyperus alopecuroides          |                   | Y              | Y               |                |
| Cyperus alterniflorus          |                   | Y              | Y               |                |
| Cyperus aquatilis              |                   | Y              | Y               |                |
| Cyperus betchei                |                   | Y              | Y               |                |
| Cyperus betchei subsp. betchei |                   | Y              | Y               |                |
| Cyperus bifax                  | western nutgrass  | Y              | Y               |                |
| Cyperus bowmannii              |                   | Y              | Y               |                |
| Cyperus brevifolius            | Mullumbimby couch | Y              |                 |                |

| Scientific Name                          | Common Name    | R <sup>1</sup> | NR <sup>1</sup> | Panel Comments |
|------------------------------------------|----------------|----------------|-----------------|----------------|
| Cyperus castaneus                        |                | Y              | Y               |                |
| Cyperus concinnus                        |                | Y              |                 |                |
| Cyperus conicus                          |                | Y              | Y               |                |
| Cyperus conicus var. conicus             |                | Y              | Y               |                |
| Cyperus cuspidatus                       |                | Y              |                 |                |
| Cyperus cyperoides                       |                | Y              | Y               |                |
| Cyperus dactylotes                       |                | Y              | Y               |                |
| Cyperus decompositus                     |                | Y              | Y               |                |
| Cyperus dietrichiae                      |                | Y              | Y               |                |
| Cyperus dietrichiae var. brevibracteatus |                | Y              | Y               |                |
| Cyperus dietrichiae var. dietrichiae     |                | Y              | Y               |                |
| Cyperus difformis                        | rice sedge     | Y              | Y               |                |
| Cyperus digitatus                        |                | Y              | Y               |                |
| Cyperus distans                          |                | Y              |                 |                |
| Cyperus enervis                          |                | Y              |                 |                |
| Cyperus exaltatus                        | tall flatsedge | Y              | Y               |                |
| Cyperus flaccidus                        |                | Y              | Y               |                |
| Cyperus flavidus                         |                | Y              | Y               |                |
| Cyperus fulvus                           |                | Y              | Y               |                |
| Cyperus gilesii                          |                | Y              | Y               |                |
| Cyperus gracilis                         |                | Y              | Y               |                |
| Cyperus gunnii subsp. gunnii             |                | Y              | Y               |                |
| Cyperus gunnii subsp. novae-hollandiae   |                | Y              | Y               |                |
| Cyperus haspan                           |                | Y              | Y               |                |
| Cyperus haspan subsp. haspan             |                | Y              | Y               |                |
| Cyperus haspan subsp. juncoides          |                | Y              | Y               |                |
| Cyperus holoschoenus                     |                | Y              | Y               |                |
| Cyperus iria                             |                | Y              | Y               |                |
| Cyperus isabellinus                      |                |                | Y               |                |
| Cyperus javanicus                        |                | Y              | Y               |                |

| Scientific Name                        | Common Name       | R <sup>1</sup> | NR <sup>1</sup> | Panel Comments |
|----------------------------------------|-------------------|----------------|-----------------|----------------|
| Cyperus kyllingia                      |                   | Y              |                 |                |
| Cyperus laevigatus                     |                   | Y              | Y               |                |
| Cyperus laevis                         |                   | Y              | Y               |                |
| Cyperus leiocaulon                     |                   | Y              | Y               |                |
| Cyperus lucidus                        |                   | Y              | Y               |                |
| Cyperus nervulosus                     |                   | Y              | Y               |                |
| Cyperus nutans var. eleusinoides       | flatsedge         | Y              | Y               |                |
| Cyperus perangustus                    |                   | Y              | Y               |                |
| Cyperus pilosus                        |                   | Y              | Y               |                |
| Cyperus platystylis                    |                   |                | Y               |                |
| Cyperus polystachyos                   |                   | Y              | Y               |                |
| Cyperus polystachyos var. polystachyos |                   | Y              | Y               |                |
| Cyperus procerus                       |                   | Y              | Y               |                |
| Cyperus pulchellus                     |                   | Y              | Y               |                |
| Cyperus pygmaeus                       | dwarf sedge       | Y              | Y               |                |
| Cyperus rotundus                       | nutgrass          | Y              | Y               |                |
| Cyperus sanguinolentus                 |                   | Y              | Y               |                |
| Cyperus scaber                         |                   | Y              |                 |                |
| Cyperus scariosus                      |                   | Y              | Y               |                |
| Cyperus sphaeroideus                   |                   | Y              | Y               |                |
| Cyperus squarrosus                     | bearded flatsedge | Y              | Y               |                |
| Cyperus subulatus                      |                   | Y              | Y               |                |
| Cyperus tetraphyllus                   |                   | Y              | Y               |                |
| Cyperus trinervis                      |                   | Y              | Y               |                |
| Cyperus unioloides                     |                   | Y              | Y               |                |
| Cyperus vaginatus                      |                   | Y              | Y               |                |
| Cyperus victoriensis                   |                   | Y              | Y               |                |
| Dichanthium setosum                    |                   | Y              |                 |                |
| Dicranopteris linearis var. linearis   |                   |                | Y               |                |
| Dinebra decipiens                      |                   | Y              |                 |                |

| Scientific Name                  | Common Name             | R <sup>1</sup> | NR <sup>1</sup> | Panel Comments |
|----------------------------------|-------------------------|----------------|-----------------|----------------|
| Diplachne fusca                  |                         | Y              | Y               |                |
| Diplachne fusca var. fusca       |                         |                | Y               |                |
| Drosera auriculata               |                         | Y              | Y               |                |
| Drosera burmanni                 |                         |                | Y               |                |
| Drosera finlaysoniana            |                         |                | Y               |                |
| Drosera lanata                   |                         | Y              | Y               |                |
| Drosera lunata                   |                         | Y              | Y               |                |
| Drosera peltata                  | pale sundew             |                | Y               |                |
| Drosera spatulata                |                         | Y              | Y               |                |
| Drosera spatulata var. spatulata |                         | Y              | Y               |                |
| Duma florulenta                  |                         | Y              | Y               |                |
| Echinochloa telmatophila         | swamp barnyard<br>grass | Y              | Y               |                |
| Echinochloa turneriana           | channel millet          | Y              | Y               |                |
| Eclipta prostrata                | white eclipta           | Y              | Y               |                |
| Ectrosia blakei                  |                         | Y              | Y               |                |
| Elaeocarpus grandis              | blue quandong           | Y              |                 |                |
| Elaeocarpus obovatus             | blueberry ash           | Y              |                 |                |
| Elaphoglossum callifolium        |                         | Y              |                 |                |
| Elatine gratioloides             | waterwort               | Y              | Y               |                |
| Eleocharis acutangula            |                         |                | Y               |                |
| Eleocharis atropurpurea          |                         |                | Y               |                |
| Eleocharis brassii               |                         |                | Y               |                |
| Eleocharis cylindrostachys       |                         | Y              | Y               |                |
| Eleocharis dulcis                |                         | Y              | Y               |                |
| Eleocharis geniculata            |                         |                | Y               |                |
| Eleocharis minuta                |                         |                | Y               |                |
| Eleocharis nuda                  |                         | Y              | Y               |                |
| Eleocharis ochrostachys          |                         | Y              | Y               |                |
| Eleocharis pallens               | pale spikerush          | Y              | Y               |                |
| Eleocharis philippinensis        |                         | Y              | Υ               |                |

| Scientific Name                                                                                       | Common Name         | R <sup>1</sup> | NR <sup>1</sup> | Panel Comments   |
|-------------------------------------------------------------------------------------------------------|---------------------|----------------|-----------------|------------------|
| Eleocharis sphacelata                                                                                 | tall spikerush      | Y              | Y               |                  |
| Eleocharis spiralis                                                                                   |                     |                | Y               |                  |
| Eleocharis tetraquetra                                                                                |                     |                | Y               |                  |
| Enchylaena tomentosa                                                                                  |                     |                | Y               |                  |
| Eremophila bignoniiflora                                                                              | eurah               | Y              | Y               |                  |
| Eriocaulon athertonense                                                                               |                     | Y              | Y               |                  |
| Eriocaulon carsonii                                                                                   |                     |                | Y               |                  |
| Eriocaulon carsonii subsp. orientale                                                                  |                     |                | Y               |                  |
| Eriocaulon cinereum                                                                                   |                     | Y              | Y               |                  |
| Eriocaulon nanum                                                                                      |                     | Y              | Y               |                  |
| Eriocaulon pygmaeum                                                                                   |                     | Y              | Y               |                  |
| Eriocaulon scariosum                                                                                  |                     | Y              | Y               | No valid records |
| Eriocaulon setaceum                                                                                   |                     |                | Y               |                  |
| Eryngium plantagineum                                                                                 | long eryngium       |                | Y               |                  |
| Eucalyptus camaldulensis                                                                              |                     | Y              | Y               |                  |
| Eucalyptus camaldulensis subsp. acuta                                                                 |                     | Y              | Y               |                  |
| <i>Eucalyptus camaldulensis</i> subsp <i>. acuta</i><br>Brooker & M.W.McDonald x <i>E.platyphylla</i> |                     | Y              | Y               |                  |
| Eucalyptus camaldulensis subsp. arida                                                                 |                     | Y              | Y               |                  |
| Eucalyptus camaldulensis subsp. obtusa                                                                |                     | Y              | Y               |                  |
| Eucalyptus camaldulensis subsp. simulata                                                              |                     | Y              | Y               |                  |
| Eucalyptus coolabah                                                                                   | coolabah            | Y              | Y               |                  |
| Eucalyptus grandis                                                                                    | flooded gum         | Y              |                 |                  |
| Eucalyptus microtheca                                                                                 | coolibah            | Y              | Y               |                  |
| Eucalyptus platyphylla                                                                                | poplar gum          |                | Y               |                  |
| Eucalyptus tereticornis                                                                               |                     | Y              | Y               |                  |
| Exocarya scleroides                                                                                   |                     |                | Y               |                  |
| Fabaceae gen. nov. (AQ735607)                                                                         |                     | Y              |                 |                  |
| Ficus coronata                                                                                        | creek sandpaper fig | Y              |                 |                  |
| Ficus racemosa                                                                                        |                     | Y              |                 |                  |
| Ficus racemosa var. racemosa                                                                          |                     | Y              |                 |                  |

| Scientific Name             | Common Name        | R <sup>1</sup> | NR <sup>1</sup> | Panel Comments   |
|-----------------------------|--------------------|----------------|-----------------|------------------|
| Ficus virens                |                    | Y              |                 |                  |
| Fimbristylis acicularis     |                    | Y              |                 |                  |
| Fimbristylis aestivalis     |                    | Y              | Y               |                  |
| Fimbristylis bisumbellata   |                    | Y              | Y               |                  |
| Fimbristylis carolinii      |                    |                | Y               |                  |
| Fimbristylis cinnamometorum |                    | Y              |                 |                  |
| Fimbristylis depauperata    |                    | Y              |                 |                  |
| Fimbristylis dichotoma      | common fringe-rush | Y              | Y               |                  |
| Fimbristylis ferruginea     |                    |                | Y               |                  |
| Fimbristylis littoralis     |                    | Y              | Y               |                  |
| Fimbristylis micans         |                    |                | Y               |                  |
| Fimbristylis microcarya     |                    | Y              | Y               |                  |
| Fimbristylis neilsonii      |                    | Y              | Y               |                  |
| Fimbristylis nuda           |                    | Y              | Y               |                  |
| Fimbristylis nutans         |                    | Y              | Y               |                  |
| Fimbristylis odontocarpa    |                    | Y              | Y               |                  |
| Fimbristylis oxystachya     |                    | Y              | Y               |                  |
| Fimbristylis pauciflora     |                    | Y              | Y               |                  |
| Fimbristylis polytrichoides |                    |                | Y               | No valid records |
| Fimbristylis rara           |                    |                | Y               |                  |
| Fimbristylis schoenoides    |                    | Y              | Y               |                  |
| Fimbristylis sieberiana     |                    |                | Y               |                  |
| Fimbristylis tristachya     |                    | Y              |                 |                  |
| Fimbristylis velata         |                    | Y              | Y               |                  |
| Fuirena ciliaris            |                    | Y              | Y               |                  |
| Fuirena incrassata          |                    | Y              | Y               |                  |
| Fuirena nudiflora           |                    | Y              |                 |                  |
| Fuirena umbellata           |                    | Y              | Y               |                  |
| Gahnia aspera               |                    | Y              |                 |                  |
| Gahnia sieberiana           | sword grass        |                | Y               |                  |

| Scientific Name                  | Common Name          | R <sup>1</sup> | NR <sup>1</sup> | Panel Comments |
|----------------------------------|----------------------|----------------|-----------------|----------------|
| Gleichenia dicarpa               | pouched coral fern   | Y              | Y               |                |
| Glinus lotoides                  | hairy carpet weed    | Y              | Y               |                |
| Glochidion ferdinandi            |                      | Y              |                 |                |
| Glochidion sumatranum            | umbrella cheese tree | Y              |                 |                |
| Glossostigma diandrum            |                      | Y              | Y               |                |
| Gossia bidwillii                 |                      | Y              |                 |                |
| Haloragis heterophylla           | rough raspweed       |                | Y               |                |
| Hibiscus tiliaceus               | cotton tree          | Y              |                 |                |
| Hydrilla verticillata            | hydrilla             | Y              | Y               |                |
| Hydrocotyle grammatocarpa        |                      |                | Y               |                |
| Hydrocotyle verticillata         | shield pennywort     | Y              | Y               |                |
| Hydrolea zeylanica               |                      |                | Y               |                |
| Hygrophila angustifolia          |                      | Y              | Y               |                |
| Hymenachne acutigluma            |                      | Y              | Y               |                |
| Hymenosporum flavum              | native frangipani    | Y              |                 |                |
| Ipomoea aquatica                 |                      |                | Y               |                |
| Isachne globosa                  | swamp millet         |                | Y               |                |
| lschaemum australe var. australe |                      |                | Y               |                |
| Ischaemum fragile                |                      |                | Y               |                |
| Isoetes muelleri                 | quillwort            | Y              | Y               |                |
| Isolepis inundata                | swamp club rush      | Y              | Y               |                |
| Juncus aridicola                 | tussock rush         | Y              | Y               |                |
| Juncus continuus                 |                      | Y              | Y               |                |
| Juncus planifolius               |                      | Y              | Y               |                |
| Juncus polyanthemus              |                      | Y              | Y               |                |
| Juncus prismatocarpus            | branching rush       | Y              | Y               |                |
| Juncus usitatus                  |                      | Y              | Y               |                |
| Leersia hexandra                 | swamp rice grass     | Y              | Y               |                |
| Lemna aequinoctialis             | common duckweed      | Y              | Y               |                |
| Lemna trisulca                   |                      |                | Y               |                |

| Scientific Name                          | Common Name      | R <sup>1</sup> | NR <sup>1</sup> | Panel Comments |
|------------------------------------------|------------------|----------------|-----------------|----------------|
| Lepidosperma laterale                    |                  | Y              | Y               |                |
| Lepidosperma laterale var. laterale      |                  |                | Y               |                |
| Lepironia articulata                     |                  | Y              | Y               |                |
| Leptochloa digitata                      |                  | Y              | Y               |                |
| Leptospermum brachyandrum                | weeping tea-tree | Y              |                 |                |
| Limnophila aromatica                     |                  | Y              | Y               |                |
| Limnophila brownii                       |                  | Y              | Y               |                |
| Limnophila fragrans                      |                  | Y              | Y               |                |
| Limosella curdieana                      | large mudwart    | Y              | Y               |                |
| Lindernia anagallis                      |                  |                | Y               |                |
| Lindernia antipoda                       |                  |                | Y               |                |
| Lindernia aplectra                       |                  | Y              | Y               |                |
| Lindernia hyssopoides                    |                  |                | Y               |                |
| Lindernia stantonii                      |                  |                | Y               |                |
| Lindernia tenuifolia                     |                  |                | Y               |                |
| Lipocarpha chinensis                     |                  |                | Y               |                |
| Lipocarpha microcephala                  |                  | Y              | Y               |                |
| Lomandra confertifolia subsp. pallida    |                  | Y              |                 |                |
| Lomandra hystrix                         |                  | Y              | Y               |                |
| Lomandra longifolia                      |                  | Y              |                 |                |
| Lomandra multiflora                      |                  | Y              |                 |                |
| Lophostemon grandiflorus                 |                  | Y              |                 |                |
| Lophostemon grandiflorus subsp. riparius |                  | Y              |                 |                |
| Lophostemon suaveolens                   | swamp box        | Y              | Y               |                |
| Ludwigia adscendens                      |                  | Y              | Y               |                |
| Ludwigia octovalvis                      | willow primrose  | Y              | Y               |                |
| Ludwigia peploides subsp. montevidensis  |                  | Y              | Y               |                |
| Ludwigia perennis                        |                  | Y              |                 |                |
| Lycopodiella cernua                      |                  |                | Y               |                |
| Lygodium microphyllum                    | snake fern       | Y              | Y               |                |

| Scientific Name                                 | Common Name           | R <sup>1</sup> | NR <sup>1</sup> | Panel Comments |
|-------------------------------------------------|-----------------------|----------------|-----------------|----------------|
| Lythrum paradoxum                               |                       | Y              | Y               |                |
| Marsilea costulifera                            | narrow-leaved nardoo  |                | Y               |                |
| Marsilea crenata                                |                       |                | Y               |                |
| Marsilea drummondii                             | common nardoo         | Y              | Y               |                |
| Marsilea exarata                                | sway-back nardoo      |                | Y               |                |
| Marsilea hirsuta                                | hairy nardoo          | Y              | Y               |                |
| Marsilea mutica                                 | shiny nardoo          | Y              | Y               |                |
| Megathyrsus maximus                             |                       | Y              | Y               |                |
| Melaleuca argentea                              | silver tea-tree       | Y              |                 |                |
| Melaleuca bracteata                             |                       | Y              | Y               |                |
| Melaleuca dealbata                              | swamp tea-tree        | Y              | Y               |                |
| Melaleuca fluviatilis                           |                       | Y              |                 |                |
| Melaleuca leucadendra                           | broad-leaved tea-tree | Y              | Y               |                |
| Melaleuca linariifolia                          | snow-in summer        | Y              | Y               |                |
| Melaleuca quinquenervia                         | swamp paperbark       | Y              | Y               |                |
| Melaleuca saligna                               |                       | Y              |                 |                |
| Melaleuca trichostachya                         |                       | Y              | Y               |                |
| Melaleuca viminalis                             |                       | Y              | Y               |                |
| Melaleuca viridiflora                           |                       |                | Y               |                |
| Melaleuca viridiflora var. viridiflora          |                       | Y              | Y               |                |
| Melastoma malabathricum subsp.<br>malabathricum |                       |                | Y               |                |
| Millettia pinnata                               |                       | Y              |                 |                |
| Monochoria australasica                         |                       | Y              | Y               |                |
| Monochoria cyanea                               |                       |                | Y               |                |
| Monochoria vaginalis                            |                       |                | Y               |                |
| Muehlenbeckia gracillima                        |                       | Y              | Y               |                |
| Muehlenbeckia rhyticarya                        |                       | Y              | Y               |                |
| Murdannia graminea                              | murdannia             | Y              | Y               |                |
| Myriophyllum dicoccum                           |                       | Y              | Y               |                |
| Myriophyllum filiforme                          |                       |                | Y               |                |

| Scientific Name                        | Common Name     | R <sup>1</sup> | NR <sup>1</sup> | Panel Comments                                                        |
|----------------------------------------|-----------------|----------------|-----------------|-----------------------------------------------------------------------|
| Myriophyllum gracile                   |                 | Y              | Y               |                                                                       |
| Myriophyllum implicatum                |                 | Y              | Y               |                                                                       |
| Myriophyllum simulans                  |                 | Y              | Y               |                                                                       |
| Myriophyllum striatum                  |                 |                | Y               |                                                                       |
| Myriophyllum verrucosum                | water milfoil   | Y              | Y               |                                                                       |
| Myrmecodia beccarii                    |                 |                | Y               |                                                                       |
| Najas browniana                        |                 | Y              | Y               | Collector is wetland specialist                                       |
| Najas tenuifolia                       | water nymph     | Y              | Y               |                                                                       |
| Nauclea orientalis                     | Leichhardt tree | Y              |                 |                                                                       |
| Nelumbo nucifera                       | pink waterlily  | Y              | Y               |                                                                       |
| Nitella pseudoflabellata               |                 | Y              | Y               | No valid records                                                      |
| Nymphaea alexii                        |                 |                | Y               |                                                                       |
| Nymphaea atrans                        |                 |                | Y               |                                                                       |
| Nymphaea carpentariae                  |                 |                | Y               |                                                                       |
| Nymphaea elleniae                      |                 | Y              | Y               |                                                                       |
| Nymphaea gigantea                      |                 | Y              | Y               |                                                                       |
| Nymphaea immutabilis                   |                 | Y              | Y               |                                                                       |
| Nymphaea macrosperma                   |                 | Y              | Y               |                                                                       |
| Nymphaea violacea                      |                 | Y              | Y               | More prevalent than specimens suggest. Taxonomically difficult group. |
| Nymphoides aurantiaca                  |                 | Y              | Y               |                                                                       |
| Nymphoides crenata                     | wavy marshwort  | Y              | Y               |                                                                       |
| Nymphoides exiliflora                  |                 | Y              | Y               |                                                                       |
| Nymphoides geminata                    |                 | Y              | Y               |                                                                       |
| Nymphoides indica                      | water snowflake | Y              | Y               |                                                                       |
| Nymphoides parvifolia                  |                 |                | Y               |                                                                       |
| Nymphoides quadriloba                  |                 |                | Y               |                                                                       |
| Nymphoides triangularis                |                 | Y              |                 |                                                                       |
| Ornduffia sp. (Laura C.Dalliston CC18) |                 |                | Y               | No valid records                                                      |
| Oryza australiensis                    |                 |                | Y               |                                                                       |

| Scientific Name         | Common Name       | R <sup>1</sup> | NR <sup>1</sup> | Panel Comments   |
|-------------------------|-------------------|----------------|-----------------|------------------|
| Oryza meridionalis      |                   |                | Y               |                  |
| Oryza rufipogon         |                   | Y              | Y               |                  |
| Ottelia alismoides      |                   | Y              | Y               |                  |
| Ottelia ovalifolia      | swamp lily        | Y              | Y               |                  |
| Pandanus cookii         |                   | Y              |                 |                  |
| Pandanus spiralis       |                   | Y              | Y               |                  |
| Panicum larcomianum     |                   | Y              | Y               |                  |
| Panicum paludosum       | swamp panic       |                | Y               |                  |
| Panicum trachyrhachis   |                   |                | Y               |                  |
| Paspalum distichum      | water couch       | Y              | Y               |                  |
| Paspalum longifolium    |                   | Y              |                 |                  |
| Paspalum scrobiculatum  | ditch millet      | Y              |                 |                  |
| Paspalum vaginatum      | saltwater couch   |                | Y               |                  |
| Persicaria attenuata    |                   | Y              | Y               |                  |
| Persicaria barbata      |                   | Y              | Y               |                  |
| Persicaria decipiens    | slender knotweed  | Y              | Y               |                  |
| Persicaria hydropiper   | water pepper      | Y              | Y               | No valid records |
| Persicaria lapathifolia | pale knotweed     | Y              | Y               |                  |
| Persicaria orientalis   | princes feathers  | Y              | Y               |                  |
| Persicaria prostrata    | creeping knotweed | Y              | Y               | No valid records |
| Persicaria strigosa     |                   | Y              | Y               |                  |
| Persicaria subsessilis  | hairy knotweed    | Y              | Y               |                  |
| Philydrum lanuginosum   | frogsmouth        | Y              | Y               |                  |
| Phragmites australis    | common reed       | Y              | Y               |                  |
| Phragmites karka        |                   | Y              | Y               | No valid records |
| Phyla nodiflora         | carpetweed        | Y              | Y               |                  |
| Platyzoma microphyllum  | braid fern        | Y              | Y               |                  |
| Polygonum plebeium      | small knotweed    | Y              | Y               |                  |
| Potamogeton crispus     | curly pondweed    | Y              | Y               |                  |
| Potamogeton octandrus   |                   | Y              | Y               |                  |

| Scientific Name                | Common Name           | R <sup>1</sup> | NR <sup>1</sup> | Panel Comments |
|--------------------------------|-----------------------|----------------|-----------------|----------------|
| Potamogeton tepperi            |                       | Y              | Y               |                |
| Potamogeton tricarinatus       | floating pondweed     | Y              | Y               |                |
| Pseudoraphis spinescens        | spiny mudgrass        |                | Y               |                |
| Rhamphicarpa australiensis     |                       |                | Y               |                |
| Rhynchospora brownii           | beak rush             | Y              | Y               |                |
| Rhynchospora corymbosa         |                       | Y              | Y               |                |
| Rhynchospora heterochaeta      |                       | Y              | Y               |                |
| Rotala diandra                 |                       | Y              | Y               |                |
| Rotala mexicana                |                       | Y              | Y               |                |
| Rotala occultiflora            |                       | Y              | Y               |                |
| Rotala tripartita              |                       |                | Y               |                |
| Rumex crystallinus             | shiny dock            | Y              | Y               |                |
| Sacciolepis indica             | Indian cupscale grass |                | Y               |                |
| Sankowskya stipularis          |                       |                | Y               |                |
| Schoenoplectiella dissachantha |                       | Y              | Y               |                |
| Schoenoplectiella laevis       |                       | Y              | Y               |                |
| Schoenoplectiella lateriflora  |                       | Y              | Y               |                |
| Schoenoplectiella mucronata    |                       | Y              | Y               |                |
| Schoenoplectus subulatus       |                       | Y              | Y               |                |
| Schoenoplectus tabernaemontani |                       | Y              | Y               |                |
| Schoenus apogon var. apogon    |                       | Y              | Y               |                |
| Schoenus falcatus              |                       |                | Y               |                |
| Schoenus kennyi                |                       | Y              | Y               |                |
| Schoenus sparteus              |                       |                | Y               |                |
| Scleria brownii                |                       | Y              | Y               |                |
| Scleria laxa                   |                       |                | Y               |                |
| Scleria mackaviensis           |                       | Y              | Y               |                |
| Scleria rugosa                 |                       | Y              | Y               |                |
| Scleria sphacelata             |                       | Y              | Y               |                |
| Sesbania cannabina             |                       | Y              | Y               |                |

| Scientific Name                        | Common Name                      | R <sup>1</sup> | NR <sup>1</sup> | Panel Comments                                    |
|----------------------------------------|----------------------------------|----------------|-----------------|---------------------------------------------------|
| Sesbania cannabina var. cannabina      |                                  |                | Y               |                                                   |
| Sesbania erubescens                    |                                  |                | Y               |                                                   |
| Sesuvium portulacastrum                | sea purslane                     |                | Y               |                                                   |
| Sparganium subglobosum                 | floating bur-reed                | Y              |                 |                                                   |
| Sphaeromorphaea australis              |                                  | Y              | Y               |                                                   |
| Sphaeromorphaea subintegra             |                                  | Y              | Y               |                                                   |
| Sphenoclea zeylanica                   |                                  | Y              | Y               | Subject to alluvial and tidal action.<br>RE 2.1.5 |
| Spirodela punctata                     | thin duckweed                    | Y              | Y               |                                                   |
| Sporobolus partimpatens                |                                  |                | Y               |                                                   |
| Sporobolus virginicus                  | sand couch                       |                | Y               |                                                   |
| Sticherus flabellatus var. flabellatus |                                  | Y              | Y               |                                                   |
| Stuckenia pectinata                    |                                  | Y              | Y               |                                                   |
| Stylidium eglandulosum                 |                                  | Y              | Y               |                                                   |
| Stylidium elachophyllum                |                                  |                | Y               |                                                   |
| Stylidium eriorhizum                   |                                  |                | Y               |                                                   |
| Stylidium graminifolium                | grassy-leaved trigger-<br>flower |                | Y               |                                                   |
| Stylidium schizanthum                  |                                  | Y              | Y               |                                                   |
| Stylidium tenerum                      |                                  |                | Y               |                                                   |
| Stylidium trichopodum                  |                                  |                | Y               |                                                   |
| Stylidium velleioides                  |                                  |                | Y               |                                                   |
| Syzygium australe                      | scrub cherry                     | Y              |                 |                                                   |
| Syzygium oleosum                       | blue cherry                      | Y              |                 |                                                   |
| Syzygium tierneyanum                   | river cherry                     | Y              |                 |                                                   |
| Tapheocarpa calandrinioides            |                                  |                | Y               |                                                   |
| Tecticornia indica                     |                                  |                | Y               |                                                   |
| Tecticornia indica subsp. leiostachya  |                                  |                | Y               |                                                   |
| Tecticornia pergranulata               |                                  |                | Y               |                                                   |
| Terminalia sericocarpa                 | damson                           | Y              |                 |                                                   |
| Tetraria capillaris                    |                                  | Y              | Y               |                                                   |

| Scientific Name                         | Common Name              | R <sup>1</sup> | NR <sup>1</sup> | Panel Comments |
|-----------------------------------------|--------------------------|----------------|-----------------|----------------|
| Trachystylis stradbrokensis             |                          |                | Y               |                |
| Trentepohlia abietina var. tenue        |                          | Y              |                 |                |
| Trentepohlia arborum                    |                          | Y              |                 |                |
| Trentepohlia bosseae var. brevicellulis |                          | Y              |                 |                |
| Trentepohlia bosseae var. samoensis     |                          | Y              |                 |                |
| Trentepohlia peruana                    |                          | Y              |                 |                |
| Trentepohlia rigidula                   |                          | Y              |                 |                |
| Tristaniopsis exiliflora                | kanuka box               | Y              |                 |                |
| Typha domingensis                       |                          | Y              | Y               |                |
| Typha orientalis                        | broad-leaved<br>cumbungi | Y              | Y               |                |
| Utricularia aurea                       | golden bladderwort       | Y              | Y               |                |
| Utricularia bifida                      |                          | Y              | Y               |                |
| Utricularia caerulea                    | blue bladderwort         | Y              | Y               |                |
| Utricularia chrysantha                  |                          |                | Y               |                |
| Utricularia dichotoma                   | fairy aprons             |                | Y               |                |
| Utricularia gibba                       | floating bladderwort     | Y              | Y               |                |
| Utricularia limosa                      |                          |                | Y               |                |
| Utricularia minutissima                 |                          |                | Y               |                |
| Utricularia muelleri                    |                          |                | Y               |                |
| Utricularia quinquedentata              |                          |                | Y               |                |
| Utricularia stellaris                   |                          | Y              | Y               |                |
| Utricularia uliginosa                   | asian bladderwort        | Y              | Y               |                |
| Vallisneria annua                       |                          |                | Y               |                |
| Vallisneria caulescens                  |                          |                | Y               |                |
| Vallisneria nana                        |                          | Y              | Y               |                |
| Viola hederacea                         |                          | Y              | Y               |                |
| Walwhalleya subxerophila                |                          | Y              | Y               |                |
| Xyris complanata                        | yellow-eye               |                | Y               |                |
| Xyris juncea                            | dwarf yellow-eye         |                | Y               |                |

### 3.3 Near threatened and threatened flora

The panel identified 10 near-threatened or threatened flora taxa relevant to the riverine and non-riverine wetlands of study areas (Table 4). Only species judged to be aquatic, semi-aquatic or riparian dependent and scheduled as near threatened, vulnerable, endangered, or critically endangered under the Queensland *Nature Conservation Act 1992* or the Commonwealth *Environment Protection and Biodiversity Conservation Act 1999* were considered.

Point records for the listed species were used to pinpoint spatial units containing priority flora taxa to calculate scores for the AquaBAMM measure 4.1.2 (Presence of near threatened or threatened aquatic ecosystem dependent flora species).

| Scientific Name                      | Common Name | R <sup>1</sup> | NR <sup>1</sup> | NCA <sup>2</sup> | EPBC <sup>3</sup> | Panel Comments                                                                                               |
|--------------------------------------|-------------|----------------|-----------------|------------------|-------------------|--------------------------------------------------------------------------------------------------------------|
| Caesalpinia hymenocarpa              |             | Υ              |                 | NT               |                   |                                                                                                              |
| Dichanthium setosum                  |             | Y              |                 | LC               | V                 | Riparian species. Very<br>localised. May be outside<br>study area                                            |
| Elaphoglossum callifolium            |             | Y              |                 | NT               |                   |                                                                                                              |
| Eriocaulon carsonii                  |             |                | Y               | E                | E                 |                                                                                                              |
| Eriocaulon carsonii subsp. orientale |             |                | Y               | E                | E                 |                                                                                                              |
| Fimbristylis carolinii               |             |                | Y               | NT               |                   |                                                                                                              |
| Fimbristylis micans                  |             |                | Y               | V                |                   |                                                                                                              |
| Myrmecodia beccarii                  |             |                | Y               | V                | V                 | Perched <i>Melaleuca</i><br><i>quinquinerva</i> swamps in that<br>particular area - spatial unit<br>ml_00162 |
| Stylidium elachophyllum              |             |                | Y               | E                |                   |                                                                                                              |
| Stylidium trichopodum                |             |                | Y               | NT               |                   |                                                                                                              |

Table 4. Aquatic dependent near threatened and threatened flora taxa

 $^{1}$ R = Riverine, NR = Non-riverine.

<sup>2</sup>NCA—Queensland Nature Conservation Act 1992: E = endangered, V = vulnerable, NT = near threatened, LC = least concern.

<sup>3</sup> EPBC—Commonwealth *Environment Protection and Biodiversity Conservation Act* 1999: Ex = extinct, CE = critically endangered, E = endangered, V = vulnerable.

### 3.4 Priority flora

Priority taxa are defined as those not listed as critically endangered, endangered, vulnerable or near threatened in Queensland or Commonwealth legislation but are considered important by the expert panel for the integrity of local aquatic ecosystems as they exhibit one or more of the following priority attributes:

- 1. It forms significant macrophyte beds (in shallow or deep water)
- 2. It is an important/critical food source
- 3. It is important/critical habitat
- 4. It is implicated in spawning or reproduction for other fauna and/or flora species.
- 5. It is at its distributional limit or is a disjunct population
- 6. It provides stream bank or bed stabilisation or has soil-binding properties
- 7. It is a small population and subject to threatening processes

Taxa vulnerable to impacts of climate change - Species that are considered to be adversely affected by the predicted changes in climate, e.g. increasing temperatures, sea level rise and increasing frequency of extreme weather events (drought, flood & cyclones).

The panel identified 72 priority flora taxa relevant to the riverine and non-riverine wetlands of the study areas (Table 5). Only species judged to be aquatic, semi-aquatic or riparian dependent were considered.

Point records for the listed species were used to pinpoint spatial units containing priority flora taxa to calculate scores for the AquaBAMM measure 5.1.2 (Presence of aquatic ecosystem dependent 'priority' flora species).

| Scientific Name                                   | Common Name    | R <sup>1</sup> | NR <sup>1</sup> | Priority Number <sup>2</sup> | Panel Comments                                               |
|---------------------------------------------------|----------------|----------------|-----------------|------------------------------|--------------------------------------------------------------|
| Acrostichum speciosum                             | mangrove fern  | Y              | Y               | 6,7                          | Tends to grow on soda<br>springs. Geographically<br>isolated |
| Azolla pinnata                                    | ferny azolla   | Y              | Y               | 1,2,3,4                      |                                                              |
| Bacopa monnieri                                   |                | Y              | Y               | 1,6                          |                                                              |
| Baumea rubiginosa                                 | soft twigrush  |                | Y               | 2,3,4,6                      |                                                              |
| Casuarina cunninghamiana                          |                | Y              |                 | 2,3,6                        |                                                              |
| Casuarina cunninghamiana<br>subsp. cunninghamiana |                | Y              |                 | 2,3,6                        |                                                              |
| Cathormion umbellatum subsp.<br>moniliforme       |                | Y              | Y               | 2                            |                                                              |
| Cathormion umbellatum subsp.<br>umbellatum        |                | Y              | Y               | 2                            |                                                              |
| Ceratopteris thalictroides                        |                | Y              | Y               | 2,3,4                        |                                                              |
| Commelina agrostophylla                           |                |                | Y               | 3                            |                                                              |
| Corypha utan                                      |                | Y              | Y               | 2,3,5                        |                                                              |
| Cyperus exaltatus                                 | tall flatsedge | Y              | Y               | 2,3,4,6                      |                                                              |
| Duma florulenta                                   |                | Y              | Y               | 3                            |                                                              |
| Eleocharis atropurpurea                           |                |                | Y               | 2,3,4,6                      |                                                              |
| Eleocharis brassii                                |                |                | Y               | 2,3,4,6                      |                                                              |
| Eleocharis cylindrostachys                        |                | Y              | Y               | 2,3,4,6                      |                                                              |

#### Table 5. Aquatic dependent priority flora taxa

| Scientific Name                            | Common Name             | R <sup>1</sup> | NR <sup>1</sup> | Priority Number <sup>2</sup> | Panel Comments |
|--------------------------------------------|-------------------------|----------------|-----------------|------------------------------|----------------|
| Eleocharis dulcis                          |                         | Y              | Y               | 1,2,3                        |                |
| Eleocharis geniculata                      |                         |                | Y               | 2,3,4,6                      |                |
| Eleocharis minuta                          |                         |                | Y               | 2,3,4,6                      |                |
| Eleocharis pallens                         | pale spikerush          | Y              | Υ               | 1                            |                |
| Eleocharis philippinensis                  |                         | Y              | Υ               | 2,3,4,6                      |                |
| Eleocharis sphacelata                      | tall spikerush          | Y              | Y               | 1,2,3                        |                |
| Eleocharis spiralis                        |                         |                | Y               | 2,3,4,6                      |                |
| Eleocharis tetraquetra                     |                         |                | Y               | 2,3,4,6                      |                |
| Eucalyptus camaldulensis                   |                         | Y              | Υ               | 2,3,6                        |                |
| Eucalyptus coolabah                        | coolabah                | Y              | Y               | 2,3,6                        |                |
| Eucalyptus tereticornis                    |                         | Y              | Y               | 2,3,6                        |                |
| Fabaceae gen. nov. (AQ735607)              |                         | Y              |                 | 7                            |                |
| Hydrilla verticillata                      | hydrilla                | Y              | Υ               | 2,3,4                        |                |
| Leersia hexandra                           | swamp rice grass        | Y              | Υ               | 2,3,4,6                      |                |
| Lepidosperma laterale                      |                         | Y              | Υ               | 1,2                          |                |
| Limnophila brownii                         |                         | Y              | Υ               | 1,2                          |                |
| Lindernia hyssopoides                      |                         |                | Υ               | 7                            |                |
| Lindernia tenuifolia                       |                         |                | Y               | 7                            |                |
| Lomandra longifolia                        |                         | Y              |                 | 6                            |                |
| Ludwigia adscendens                        |                         | Y              | Υ               | 2                            |                |
| Ludwigia peploides subsp.<br>montevidensis |                         | Y              | Y               | 2,3,4,6                      |                |
| Marsilea costulifera                       | narrow-leaved<br>nardoo |                | Y               | 1,2                          |                |
| Marsilea crenata                           |                         |                | Y               | 1,2                          |                |
| Marsilea drummondii                        | common nardoo           | Y              | Υ               | 2,3,4,6                      |                |
| Marsilea exarata                           | sway-back nardoo        |                | Υ               | 1,2                          |                |
| Marsilea hirsuta                           | hairy nardoo            | Y              | Y               | 2,3,4,6                      |                |
| Marsilea mutica                            | shiny nardoo            | Y              | Y               | 2,3,4,6                      |                |
| Melaleuca bracteata                        |                         | Y              | Y               | 3,6                          |                |
| Melaleuca fluviatilis                      |                         | Y              |                 | 2,3,6                        |                |

| Scientific Name             | Common Name               | R <sup>1</sup> | NR <sup>1</sup> | Priority Number <sup>2</sup> | Panel Comments                                                             |
|-----------------------------|---------------------------|----------------|-----------------|------------------------------|----------------------------------------------------------------------------|
| Melaleuca leucadendra       | broad-leaved tea-<br>tree | Y              | Y               | 2,3,6                        |                                                                            |
| Melaleuca viminalis         |                           | Y              | Y               | 2,3,6                        |                                                                            |
| Monochoria cyanea           |                           |                | Y               | 2,3,4                        |                                                                            |
| Myriophyllum simulans       |                           | Y              | Y               | 2,3,4                        |                                                                            |
| Myriophyllum verrucosum     | water milfoil             | Y              | Y               | 1,2,3,4,6                    |                                                                            |
| Najas tenuifolia            | water nymph               | Y              | Y               | 1,2,3,4                      |                                                                            |
| Nauclea orientalis          |                           | Y              |                 | 2,6                          |                                                                            |
| Nelumbo nucifera            | pink waterlily            | Y              | Y               | 5                            |                                                                            |
| Nymphaea gigantea           |                           | Y              | Y               | 2                            |                                                                            |
| Nymphaea violacea           |                           | Y              | Y               | 1,2                          | More prevalent than<br>specimens suggest.<br>Taxonomically difficult group |
| Nymphoides exiliflora       |                           | Y              | Y               | 2,3,4                        |                                                                            |
| Nymphoides indica           | water snowflake           | Y              | Y               | 2,3,4                        |                                                                            |
| Oryza australiensis         |                           |                | Y               | 1,2,3,4,6,7                  |                                                                            |
| Oryza rufipogon             |                           | Y              | Y               | 1,2,3,4,6,7                  |                                                                            |
| Ottelia alismoides          |                           | Y              | Y               | 2                            |                                                                            |
| Ottelia ovalifolia          | swamp lily                | Y              | Y               | 1,2,3,4                      |                                                                            |
| Pandanus cookii             |                           | Y              |                 | 2,3                          |                                                                            |
| Pandanus spiralis           |                           | Y              | Y               | 2,3                          |                                                                            |
| Panicum trachyrhachis       |                           |                | Y               | 2,3                          |                                                                            |
| Persicaria barbata          |                           | Y              | Y               | 2,3                          |                                                                            |
| Phragmites australis        | common reed               | Y              | Y               | 3,5,7                        |                                                                            |
| Pseudoraphis spinescens     | spiny mudgrass            |                | Y               | 2,3,4,6                      |                                                                            |
| Schoenoplectiella mucronata |                           | Y              | Y               | 2,3,4,6                      |                                                                            |
| Scleria mackaviensis        |                           | Y              | Y               | 2,3                          |                                                                            |
| Sphenoclea zeylanica        |                           | Y              | Y               | 1,2,5,8                      | Subject to alluvial and tidal action. RE 2.1.5                             |
| Typha domingensis           |                           | Y              | Y               | 2,3,6                        |                                                                            |
| Vallisneria nana            |                           | Y              | Y               | 2,3,4                        |                                                                            |

 $^{1}$  R = Riverine, NR = Non-riverine.

<sup>2</sup> The priority number is the priority attribute each species exhibit.

## 4 Fauna

### 4.1 Exotic fauna

Exotic fauna species found in or likely to invade study area wetlands were evaluated by the panel. Only species known or suspected to cause significant detrimental impact to wetland habitat values and/or native species were considered. The panel identified 16 exotic fauna taxa relevant to the riverine and non-riverine wetlands of the study areas (Table 6).

Pest distribution (species occurrence) maps produced by Biosecurity Queensland (Department of Agriculture and Fisheries) and point records for the listed species were used to pinpoint spatial units containing exotic fauna taxa to calculate scores for the AquaBAMM measures 1.1.1 (Presence of 'alien' fish species within the wetland), 1.1.3 (Presence of exotic invertebrate fauna within the wetland) and 1.1.4 (Presence of feral/exotic vertebrate fauna (other than fish) within the wetland).

The panel also highlighted abundance and degree of infestation as important factors in determining the overall impact of exotic species on wetland ecosystems. The AquaBAMM project team is currently exploring the incorporation of abundance and degree of infestation into future assessments.

| Scientific name        | Common name      | R <sup>1</sup> | NR <sup>1</sup> | M1.1.1 | M1.1.3 | M1.1.4 | Panel comments                                                                                                                                                         |  |
|------------------------|------------------|----------------|-----------------|--------|--------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Invertebrate           |                  |                |                 |        |        |        |                                                                                                                                                                        |  |
| Melanoides tuberculata | snail            |                | Y               |        | Y      |        | Recorded in spring on<br>Talaroo Station                                                                                                                               |  |
| Fish                   |                  |                |                 |        |        |        |                                                                                                                                                                        |  |
| Carassius auratus      | goldfish         | Y              | Y               | Y      |        |        | Only one very old record                                                                                                                                               |  |
| Gambusia holbrooki     | eastern gambusia | Y              | Y               | Y      |        |        |                                                                                                                                                                        |  |
| Poecilia reticulata    | guppy            | Y              | Y               | Y      |        |        |                                                                                                                                                                        |  |
| Tilapia mariae         | spotted tilapia  | Y              | Y               | Y      |        |        |                                                                                                                                                                        |  |
| Xiphophorus hellerii   | swordtail        | Y              | Y               | Y      |        |        |                                                                                                                                                                        |  |
| Amphibian              |                  |                |                 |        |        |        |                                                                                                                                                                        |  |
| Rhinella marina        | cane toad        | Y              | Y               |        |        | Y      | Impact on native predators/<br>frogs. Influences food<br>webs at catchment scale.<br>Eggs can influence water<br>quality through the poison<br>emanating from the eggs |  |
| Bird                   |                  |                |                 |        |        |        |                                                                                                                                                                        |  |
| Lonchura punctulata    | nutmeg mannikin  | Y              | Y               |        |        | Y      | Resource competitor for native finches                                                                                                                                 |  |
| Mammal                 |                  |                |                 |        |        |        |                                                                                                                                                                        |  |
| Bos indicus            | zebu             | Y              | Y               |        |        | Y      | Wetland degradation                                                                                                                                                    |  |
| Bos spp.               | cattle spp.      | Y              | Y               |        |        | Y      | Wetland degradation                                                                                                                                                    |  |
| Bos taurus             | European cattle  | Y              | Y               |        |        | Y      | Wetland degradation                                                                                                                                                    |  |

#### Table 6. Exotic fauna taxa impacting study area wetland values

| Scientific name  | Common name | R <sup>1</sup> | NR <sup>1</sup> | M1.1.1 | M1.1.3 | M1.1.4 | Panel comments                                                        |
|------------------|-------------|----------------|-----------------|--------|--------|--------|-----------------------------------------------------------------------|
| Canis familiaris | dog         | Y              | Y               |        |        | Y      | Predation on waterbirds.<br>Use DAFF raster                           |
| Equus caballus   | horse       | Y              | Y               |        |        | Y      | Wetland degradation. Use DAFF raster                                  |
| Felis catus      | cat         | Y              | Y               |        |        | Y      | Predation on waterbirds.<br>Use DAFF raster                           |
| Sus scrofa       | pig         | Y              | Y               |        |        | Y      | Wetland degradation and predation on turtle nests.<br>Use DAFF raster |
| Vulpes vulpes    | red fox     | Y              | Y               |        |        | Y      | Predation on waterbirds                                               |

 $^{1}$ R = Riverine, NR = Non-riverine.

### 4.2 Fauna species richness

Fauna species richness (total number of species) was calculated using wetland dependent species. Such a species as is defined as:

Species that are adapted to and dependent on living in wet conditions for at least part of their life and are found either within or immediately adjoining a riverine, non-riverine or estuarine wetland.

### 4.2.1 Amphibian richness

The panel identified 57 native amphibian wetland indicator species relevant to the riverine and non-riverine wetlands of the study areas (Table 7).

Point records for the listed species were used to pinpoint spatial units containing native amphibian taxa to calculate species richness scores for the AquaBAMM measures 3.1.1 (Richness of native amphibians (riverine wetland breeders)) and 3.1.6 (Richness of native amphibians (non-riverine wetland breeders)).

| Scientific name                 | Common name             | R <sup>1</sup><br>(M3.1.1) | NR <sup>1</sup><br>(M3.1.6) | Panel comments                               |
|---------------------------------|-------------------------|----------------------------|-----------------------------|----------------------------------------------|
| Crinia deserticola              | chirping froglet        | Υ                          | Y                           |                                              |
| Crinia remota                   | northern froglet        |                            | Y                           |                                              |
| Cyclorana alboguttata           | greenstripe frog        |                            | Y                           |                                              |
| Cyclorana australis             | northern snapping frog  |                            | Y                           |                                              |
| Cyclorana brevipes              | superb collared frog    |                            | Y                           |                                              |
| Cyclorana cryptotis             | earless frog            |                            | Y                           | Disjunct populations (EHP 2015a)             |
| Cyclorana cultripes             | grassland collared frog |                            | Y                           |                                              |
| Cyclorana manya                 | little collared frog    |                            | Y                           | Largely restricted to study area (EHP 2015a) |
| Cyclorana novaehollandiae       | eastern snapping frog   |                            | Y                           |                                              |
| Limnodynastes<br>convexiusculus | marbled frog            |                            | Y                           |                                              |

Table 7. Aquatic dependent native amphibian taxa

| Scientific name                | Common name                    | R <sup>1</sup><br>(M3.1.1) | NR <sup>1</sup><br>(M3.1.6) | Panel comments                                                                 |
|--------------------------------|--------------------------------|----------------------------|-----------------------------|--------------------------------------------------------------------------------|
| Limnodynastes peronii          | striped marshfrog              | Y                          | Y                           |                                                                                |
| Limnodynastes tasmaniensis     | spotted grassfrog              |                            | Y                           |                                                                                |
| Limnodynastes terraereginae    | scarlet sided pobblebonk       | Y                          | Y                           |                                                                                |
| Litoria bicolor                | northern sedgefrog             | Y                          | Y                           |                                                                                |
| Litoria caerulea               | common green treefrog          | Y                          | Y                           |                                                                                |
| Litoria dahlii                 | northern waterfrog             | Y                          | Y                           | Largely restricted to study area (EHP 2015a)                                   |
| Litoria dayi                   | Australian lacelid             | Y                          |                             | Check with Harry Hines as there are many invalid records. Also Keith McDonald. |
| Litoria electrica              | buzzing treefrog               |                            | Y                           |                                                                                |
| Litoria fallax                 | eastern sedgefrog              | Y                          | Y                           |                                                                                |
| Litoria gracilenta             | graceful treefrog              | Y                          | Y                           |                                                                                |
| Litoria inermis                | bumpy rocketfrog               | Y                          | Y                           |                                                                                |
| Litoria infrafrenata           | white Lipped treefrog          | Υ                          | Y                           |                                                                                |
| Litoria jungguy                | northern stony creek frog      | Υ                          | Υ                           |                                                                                |
| Litoria latopalmata            | broad palmed rocketfrog        | Y                          | Y                           |                                                                                |
| Litoria lorica                 | little waterfall frog          | Y                          |                             |                                                                                |
| Litoria microbelos             | javelin frog                   |                            | Y                           |                                                                                |
| Litoria myola                  | Kuranda treefrog               | Y                          |                             |                                                                                |
| Litoria nannotis               | waterfall frog                 | Y                          |                             |                                                                                |
| Litoria nasuta                 | striped rocketfrog             | Y                          | Y                           |                                                                                |
| Litoria nigrofrenata           | tawny rocketfrog               | Y                          | Y                           |                                                                                |
| Litoria nyakalensis            | mountain mistfrog              | Y                          |                             |                                                                                |
| Litoria pallida                | pallid rocketfrog              | Y                          | Y                           |                                                                                |
| Litoria rheocola               | common mistfrog                | Y                          |                             |                                                                                |
| Litoria rothii                 | northern laughing<br>Treefrog  | Y                          | Y                           |                                                                                |
| Litoria rubella                | ruddy treefrog                 | Y                          | Y                           |                                                                                |
| Litoria serrata                | tapping green-eyed<br>treefrog | Y                          |                             |                                                                                |
| Litoria sp. 'wilcoxii/jungguy' | stony creek frog               | Y                          | Y                           |                                                                                |
| Litoria tornieri               | black-shinned rocketfrog       |                            | Y                           |                                                                                |

| Scientific name                           | Common name                     | R <sup>1</sup><br>(M3.1.1) | NR <sup>1</sup><br>(M3.1.6) | Panel comments                        |
|-------------------------------------------|---------------------------------|----------------------------|-----------------------------|---------------------------------------|
| Litoria wilcoxii                          | eastern stony creek frog        | Y                          | Y                           |                                       |
| Litoria xanthomera                        | orange thighed treefrog         | Y                          | Y                           |                                       |
| Mixophyes carbinensis                     | Carbine barred frog             | Y                          | Y                           |                                       |
| Mixophyes coggeri                         | mottled barred frog             | Y                          | Y                           |                                       |
| Mixophyes schevilli                       | northern barred-frog            | Y                          | Y                           |                                       |
| <i>Mixophyes schevilli</i> (spp. complex) | northern barred-frog<br>complex | Y                          | Y                           |                                       |
| Notaden melanoscaphus                     | brown shovelfoot                |                            | Y                           |                                       |
| Notaden nichollsi                         | desert shovelfoot               |                            | Y                           | Small disjunct population (EHP 2015a) |
| Papurana daemeli                          | Australian woodfrog             | Y                          | Y                           |                                       |
| Platyplectrum ornatum                     | ornate burrowing frog           | Y                          | Y                           |                                       |
| Pseudophryne covacevichae                 | magnificent broodfrog           |                            | Y                           |                                       |
| Pseudophryne major                        | great brown broodfrog           | Y                          | Y                           |                                       |
| Taudactylus acutirostris                  | sharp snouted dayfrog           | Y                          |                             |                                       |
| Taudactylus rheophilus                    | northern tinkerfrog             | Y                          |                             |                                       |
| Uperoleia altissima                       | tableland gungan                | Y                          | Y                           |                                       |
| Uperoleia lithomoda                       | stonemason gungan               |                            | Y                           |                                       |
| Uperoleia littlejohni                     | Einasleigh gungan               | Y                          | Y                           |                                       |
| Uperoleia mimula                          | mimicking gungan                |                            | Y                           |                                       |
| Uperoleia trachyderma                     | orange shouldered<br>gungan     |                            | Y                           |                                       |

R = Riverine, NR = Non-riverine.
## 4.2.2 Fish richness

The panel identified 102 native fish taxa relevant to the riverine and non-riverine wetlands of the study areas (Table 8).

Point records for the listed species were used to pinpoint spatial units containing native fish taxa to calculate species richness scores for the AquaBAMM measure 3.1.2 (Richness of native fish).

| Table 8. Aquatic | dependent | native | fish | taxa |
|------------------|-----------|--------|------|------|
|------------------|-----------|--------|------|------|

| Scientific name                                       | Common name         | R <sup>1</sup> | NR <sup>1</sup> | Panel comments                                                                                                                                                                       |
|-------------------------------------------------------|---------------------|----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acanthopagrus berda/pacificus                         | pikey bream         | Y              |                 |                                                                                                                                                                                      |
| Ambassis agassizii                                    | Agassiz's glassfish | Y              | Y               |                                                                                                                                                                                      |
| Ambassis agrammus                                     | sailfin glassfish   | Y              | Y               |                                                                                                                                                                                      |
| Ambassis elongatus                                    | elongate glassfish  | Y              | Y               | Restricted to Gulf catchments                                                                                                                                                        |
| Ambassis macleayi                                     | Macleay's glassfish | Y              | Y               |                                                                                                                                                                                      |
| Ambassis miops                                        | flagtail glassfish  | Y              |                 | Disjunct population. Recorded by T.<br>Vallance on 2 separate occasions at Mutton<br>Hole Wetlands near Normanton.                                                                   |
| Ambassis nalua                                        | scalloped glassfish | Y              |                 |                                                                                                                                                                                      |
| Ambassis sp.                                          | glassfish sp.       | Y              | Y               |                                                                                                                                                                                      |
| <i>Ambassis</i> sp. 'Northwest'<br>( <i>mulleri</i> ) | northwest glassfish | Y              | Y               |                                                                                                                                                                                      |
| Ambassis vachelli                                     | Vachell's glassfish | Y              |                 |                                                                                                                                                                                      |
| Amniataba caudavittata                                | yellowtail grunter  | Y              |                 |                                                                                                                                                                                      |
| Amniataba percoides                                   | barred grunter      | Y              | Y               |                                                                                                                                                                                      |
| Anodontiglanis dahli                                  | toothless catfish   | Y              |                 |                                                                                                                                                                                      |
| Arrhamphus sclerolepis                                | snubnose garfish    | Y              | Y               |                                                                                                                                                                                      |
| Bostrychus zonatus                                    | sunset gudgeon      | Y              | Y               |                                                                                                                                                                                      |
| Brachirus salinarum                                   | saltpan sole        | Y              |                 |                                                                                                                                                                                      |
| Brachirus selheimi                                    | freshwater sole     | Y              |                 |                                                                                                                                                                                      |
| Brachirus sp.                                         | sole sp.            | Y              |                 |                                                                                                                                                                                      |
| Butis butis                                           | crimsontip gudgeon  | Y              |                 |                                                                                                                                                                                      |
| Carcharhinus leucas                                   | bull shark          | Y              |                 | Top predator in freshwater, one of only 4.<br>Juveniles remain in freshwater for first 4 or 5<br>years and as adult, then move in to<br>estuaries. Migratory species in this context |
| Chanos chanos                                         | milkfish            | Y              |                 |                                                                                                                                                                                      |
| Chlamydogobius ranunculus                             | tadpole goby        |                | Y               | Found in bores in Flinders & Norman.<br>Taxonomy unresolved                                                                                                                          |
| Chlamydogobius sp.                                    | goby sp.            | Y              | Y               |                                                                                                                                                                                      |

| Scientific name                    | Common name                        | R <sup>1</sup> | NR <sup>1</sup> | Panel comments                                                                                                                                                                                                                                                           |
|------------------------------------|------------------------------------|----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cinetodus froggatti                | smallmouth catfish                 | Y              |                 |                                                                                                                                                                                                                                                                          |
| Clupeoides cf. papuensis           | Papuan sprat/toothed river herring | Y              | Y               | Possible undescribed taxon                                                                                                                                                                                                                                               |
| Craterocephalus munroi             | Munro's hardyhead                  | Y              |                 |                                                                                                                                                                                                                                                                          |
| Craterocephalus sp.                | hardyhead sp.                      | Y              | Y               |                                                                                                                                                                                                                                                                          |
| Craterocephalus<br>stercusmuscarum | flyspecked hardyhead               | Y              | Y               |                                                                                                                                                                                                                                                                          |
| Denariusa australis                | pennyfish                          | Y              | Y               |                                                                                                                                                                                                                                                                          |
| Eleotris sp.                       | gudgeon sp.                        | Y              |                 |                                                                                                                                                                                                                                                                          |
| Gerres filamentosus                | threadfin silverbiddy              | Y              |                 |                                                                                                                                                                                                                                                                          |
| Gerres sp.                         | silver biddy sp.                   | Y              |                 |                                                                                                                                                                                                                                                                          |
| Glossamia aprion                   | mouth almighty                     | Y              | Y               |                                                                                                                                                                                                                                                                          |
| Glossogobius aureus                | golden flathead goby               | Y              |                 |                                                                                                                                                                                                                                                                          |
| Glossogobius giurus                | tank goby                          | Y              |                 |                                                                                                                                                                                                                                                                          |
| Glossogobius munroi                | square-blotch/Munro's<br>goby      | Y              |                 |                                                                                                                                                                                                                                                                          |
| Glossogobius sp.                   | goby sp.                           | Y              | Y               | Possibly undescribed taxon in Gilbert                                                                                                                                                                                                                                    |
| Glossogobius sp. 3 - dwarf         | dwarf goby                         | Y              |                 | Only vague record from Mitchell catchment                                                                                                                                                                                                                                |
| Hephaestus carbo                   | coal grunter                       | Y              | Y               |                                                                                                                                                                                                                                                                          |
| Hephaestus fuliginosus             | sooty grunter                      | Y              | Y               | Migratory within main channel. Uses riffles<br>and runs as spawning grounds. Especially<br>found in Mitchell                                                                                                                                                             |
| Himantura dalyensis                | freshwater whipray                 | Y              |                 | Poorly known. One of only 3-4 obligate<br>freshwater elasobrachii. Only freshwater<br>stingray in Aust. Grows to 2.5 m in diameter<br>and can be 5 m long. Gulf is stronghold                                                                                            |
| Hypseleotris compressa             | empire gudgeon                     | Y              | Y               |                                                                                                                                                                                                                                                                          |
| Hypseleotris sp.                   | gudgeon sp.                        | Y              | Y               |                                                                                                                                                                                                                                                                          |
| Hypseleotris sp. 1                 | Midgley's carp gudgeon             | Y              | Y               |                                                                                                                                                                                                                                                                          |
| Iriatherina werneri                | threadfin rainbowfish              | Y              | Y               |                                                                                                                                                                                                                                                                          |
| Kurtus gulliveri                   | nurseryfish                        | Y              | Y               | Poorly known. Relictual. Puts eggs on head<br>in a hook. Very unusual reproduction<br>strategies. Primarily estuarine but also in<br>freshwater. Restricted to lower end of<br>southern gulf catchments. Considered<br>potentially vulnerable (Le Feuvre et al.<br>2016) |
| Lates calcarifer                   | barramundi                         | Y              | Y               | Massive abundance and also migratory                                                                                                                                                                                                                                     |

| Scientific name           | Common name                    | R <sup>1</sup> | NR <sup>1</sup> | Panel comments                                                      |
|---------------------------|--------------------------------|----------------|-----------------|---------------------------------------------------------------------|
| Leiopotherapon unicolor   | spangled perch                 | Y              | Y               | Flood colonist species. Persists where others can't (Brendan Ebner) |
| Lutjanus argentimaculatus | mangrove jack                  | Y              |                 |                                                                     |
| Megalops cyprinoides      | oxeye herring/tarpon           | Y              | Y               |                                                                     |
| Melanotaenia nigrans      | blackbanded rainbowfish        | Y              | Y               |                                                                     |
| <i>Melanotaenia</i> sp.   | rainbowfish sp.                | Y              | Y               |                                                                     |
| Melanotaenia splendida    | eastern rainbowfish            | Y              | Y               |                                                                     |
| Melanotaenia trifasciata  | banded rainbowfish             | Y              | Y               |                                                                     |
| Mogurnda adspersa         | southern purplespotted gudgeon | Y              |                 |                                                                     |
| Mogurnda mogurnda         | northern purplespotted gudgeon | Y              |                 |                                                                     |
| <i>Mogurnda</i> sp.       | gudgeon sp.                    | Y              |                 |                                                                     |
| Mugil cephalus            | sea mullet                     | Y              | Y               |                                                                     |
| Nematalosa erebi          | bony bream                     | Y              | Y               |                                                                     |
| Neoarius berneyi          | highfin catfish                | Y              |                 |                                                                     |
| Neoarius graeffei         | blue catfish                   | Y              | Y               |                                                                     |
| Neoarius midgleyi         | silver cobbler                 | Y              | Y               |                                                                     |
| <i>Neoarius</i> sp.       | fork-tailed catfish sp.        | Y              | Y               |                                                                     |
| Neosilurus ater           | black catfish                  | Y              | Y               | Moves in to ephemeral creeks to breed<br>(Brendan Ebner)            |
| Neosilurus hyrtlii        | Hyrtl's catfish                | Y              | Y               | Moves in to ephemeral creeks to breed<br>(Brendan Ebner)            |
| Neosilurus sp.            | eel-tailed catfish sp.         | Y              | Y               | Migratory upstream within freshwater to breeding areas.             |
| Ophiocara porocephala     | spangled gudgeon               | Y              | Y               | Contact Brendan to check.                                           |
| Ophisternon gutturale     | swamp eel                      | Y              | Y               |                                                                     |
| Ophisternon sp.           | swamp eel sp.                  | Y              | Y               |                                                                     |
| Oxyeleotris lineolata     | sleepy cod                     | Y              | Y               |                                                                     |
| Oxyeleotris selheimi      | blackbanded gudgeon            | Y              | Y               |                                                                     |
| <i>Oxyeleotris</i> sp.    | gudgeon sp.                    | Y              | Y               |                                                                     |
| Parambassis gulliveri     | giant glassfish                | Y              | Y               |                                                                     |
| Pingalla gilberti         | Gilbert's grunter              | Y              |                 | Endemic to study areas                                              |
| Porochilus argenteus      | silver catfish                 | Y              | Y               | Old identification. Confirmed by Michael                            |

| Scientific name          | Common name                | R <sup>1</sup> | NR <sup>1</sup> | Panel comments                                                                                                                                                                                                                                    |
|--------------------------|----------------------------|----------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                            |                |                 | Hammer                                                                                                                                                                                                                                            |
| Porochilus rendahli      | Rendahl's catfish          | Y              | Y               |                                                                                                                                                                                                                                                   |
| Porochilus sp. 3         | Delta Downs catfish sp.    | Y              | Y               | Endemic, undescribed taxon of conservation concern                                                                                                                                                                                                |
| Porochilus sp. Flinders  | Flinders River catfish sp. | Y              |                 | Endemic, undescribed taxon? Biggest species in the genus in Indopacific                                                                                                                                                                           |
| Prionobutis microps      | smalleye gudgeon           | Y              |                 |                                                                                                                                                                                                                                                   |
| Pristis pristis          | freshwater sawfish         | Y              | Y               | Records can be high up. Can be occasionally found in non-riverine wetlands                                                                                                                                                                        |
| Psammogobius biocellatus | sleepy goby                | Y              |                 |                                                                                                                                                                                                                                                   |
| Pseudogobius sp.         | goby sp.                   |                | Y               | Possible undescribed taxon                                                                                                                                                                                                                        |
| Pseudomugil sp.          | blue-eye sp.               | Y              | Y               |                                                                                                                                                                                                                                                   |
| Pseudomugil tenellus     | delicate blue eye          |                | Y               |                                                                                                                                                                                                                                                   |
| Redigobius bikolanus     | speckled goby              | Y              | Y               |                                                                                                                                                                                                                                                   |
| Scatophagus argus        | spotted scat               | Y              |                 |                                                                                                                                                                                                                                                   |
| Sciades leptaspis        | boofhead catfish           | Y              |                 |                                                                                                                                                                                                                                                   |
| Sciades paucus           | shovelnose catfish         | Y              | Y               |                                                                                                                                                                                                                                                   |
| Scleropages jardinii     | northern saratoga          | Y              | Y               |                                                                                                                                                                                                                                                   |
| Scortum ogilbyi          | gulf grunter               | Y              | Y               | Endemic to study areas                                                                                                                                                                                                                            |
| Scortum sp.              | grunter sp.                | Y              | Y               |                                                                                                                                                                                                                                                   |
| Selenotoca multifasciata | striped scat               | Y              |                 |                                                                                                                                                                                                                                                   |
| Strongylura krefftii     | freshwater longtom         | Y              | Y               | Accesses range of habitats. Spawns under<br>low or no flow. Very unlike other species.<br>(Brendan Ebner)                                                                                                                                         |
| Terapon jarbua           | crescent grunter           | Y              |                 |                                                                                                                                                                                                                                                   |
| Thryssa scratchleyi      | freshwater thryssa         | Y              | Y               | Restricted range with important core habitat in southern Gulf (Mike Hammer)                                                                                                                                                                       |
| <i>Thryssa</i> sp.       | thryssa sp.                | Y              | Y               | Possible undescribed taxon                                                                                                                                                                                                                        |
| Toxotes chatareus        | sevenspot archerfish       | Y              | Y               |                                                                                                                                                                                                                                                   |
| Toxotes jaculatrix       | banded archerfish          | Y              |                 |                                                                                                                                                                                                                                                   |
| Variichthys lacustris    | lake grunter               |                | Y               | Highly disjunct population; very limited<br>distribution. Possible indicator of a different<br>geomorphological wetland type. Warrants<br>further investigation/intensive surveys.<br>Considered potentially vulnerable (Le<br>Feuvre et al 2016) |
| Zenarchopterus buffonis  | northern river garfish     | Y              |                 |                                                                                                                                                                                                                                                   |

| Scientific name             | Common name            | R <sup>1</sup> | NR <sup>1</sup> | Panel comments |
|-----------------------------|------------------------|----------------|-----------------|----------------|
| Zenarchopterus dispar       | spoonfin river garfish | Y              |                 |                |
| Zenarchopterus novaeguineae | Fly River garfish      | Y              |                 |                |

 $^{1}$  R = Riverine, NR = Non-riverine.

#### 4.2.3 Reptile richness

The panel identified 20 native reptile wetland dependent species relevant to the riverine and non-riverine wetlands of the study areas (Table 9).

Point records for the listed species were used to pinpoint spatial units containing native reptile taxa to calculate scores for the AquaBAMM measure 3.1.3 (Richness of native aquatic dependent reptiles).

| Scientific name             | Common name                     | R <sup>1</sup> | NR <sup>1</sup> | Panel comments                                                                                   |
|-----------------------------|---------------------------------|----------------|-----------------|--------------------------------------------------------------------------------------------------|
| Acrochordus arafurae        | Arafura file snake              | Y              | Y               |                                                                                                  |
| Acrochordus granulatus      | little file snake               | Y              | Y               |                                                                                                  |
| Chelodina canni             | Cann's longneck turtle          | Y              | Y               |                                                                                                  |
| Chelodina oblonga/rugosa    | northern snake-necked<br>turtle | Y              | Y               | Impact of pig predation (Fordham et al. 2006)                                                    |
| Chelodina sp.               | turtle sp.                      | Y              | Y               |                                                                                                  |
| Crocodylus johnstoni        | Australian freshwater crocodile | Y              |                 |                                                                                                  |
| Crocodylus porosus          | estuarine crocodile             | Y              | Y               |                                                                                                  |
| Crocodylus sp.              | crocodile sp.                   | Y              |                 |                                                                                                  |
| <i>Elseya</i> sp.           | turtle sp.                      | Y              | Y               |                                                                                                  |
| Emydura macquarii krefftii  | Krefft's river turtle           | Y              | Y               |                                                                                                  |
| <i>Emydura</i> sp.          | turtle sp.                      | Y              | Y               |                                                                                                  |
| Emydura subglobosa worrelli | diamond head turtle             | Y              | Y               |                                                                                                  |
| Emydura tanybaraga          | northern yellow-faced<br>turtle | Y              | Y               | Largely restricted to study area (EHP 2015a) but current taxonomic status uncertain (A. Freeman) |
| Intellagama lesueurii       | eastern water dragon            | Y              | Y               |                                                                                                  |
| Liasis mackloti             | water python                    | Y              | Y               |                                                                                                  |
| Pseudoferania polylepis     | Macleay's water snake           | Y              | Y               |                                                                                                  |
| Tropidonophis mairii        | freshwater snake                | Y              | Y               |                                                                                                  |
| Varanus mertensi            | Mertens' water monitor          | Y              | Y               | Impacted by cane toads                                                                           |
| Varanus mitchelli           | Mitchell's water monitor        | Y              | Y               | Impacted by cane toads                                                                           |
| Wollumbinia latisternum     | saw-shelled turtle              | Y              | Y               |                                                                                                  |

Table 9. Aquatic dependent native reptile taxa

 $^{1}$  R = Riverine, NR = Non-riverine.

## 4.2.4 Waterbird richness

The panel identified 109 native bird wetland indicator species relevant to the riverine and non-riverine wetlands of the study areas (Table 10). Only bird species inhabiting freshwater wetland environments for all or part of their natural life functions were considered.

Point records for the listed species were used to pinpoint spatial units containing native bird taxa to calculate species richness scores for the AquaBAMM measure 3.1.4 (Richness of native waterbirds).

|  | Table 10. | Aquatic | dependent | native | bird | taxa |
|--|-----------|---------|-----------|--------|------|------|
|--|-----------|---------|-----------|--------|------|------|

| Scientific name         | Common name             | R <sup>1</sup> | NR <sup>1</sup> | Panel comments     |
|-------------------------|-------------------------|----------------|-----------------|--------------------|
| Acrocephalus australis  | Australian reed-warbler | Y              | Y               |                    |
| Actitis hypoleucos      | common sandpiper        | Y              |                 |                    |
| Amaurornis cinerea      | white-browed crake      | Y              | Y               |                    |
| Amaurornis moluccana    | pale-vented bush-hen    | Y              | Y               |                    |
| Anas castanea           | chestnut teal           | Y              | Y               | Vagrant occurrence |
| Anas gracilis           | grey teal               | Y              | Y               |                    |
| Anas querquedula        | garganey                | Y              | Y               | Vagrant occurrence |
| Anas rhynchotis         | Australasian shoveler   | Y              | Y               | Vagrant occurrence |
| Anas superciliosa       | Pacific black duck      | Y              | Y               |                    |
| Anhinga novaehollandiae | Australasian darter     | Y              | Y               |                    |
| Anseranas semipalmata   | magpie goose            | Y              | Y               |                    |
| Ardea ibis              | cattle egret            | Y              | Y               |                    |
| Ardea intermedia        | intermediate egret      | Y              | Y               |                    |
| Ardea modesta           | eastern great egret     | Y              | Y               |                    |
| Ardea pacifica          | white-necked heron      | Y              | Y               |                    |
| Ardea sumatrana         | great-billed heron      | Y              | Y               |                    |
| Aythya australis        | hardhead                | Y              | Y               |                    |
| Biziura lobata          | Musk Duck               | Y              | Y               | Vagrant occurrence |
| Butorides striata       | striated heron          | Y              |                 |                    |
| Calidris acuminata      | sharp-tailed sandpiper  |                | Y               |                    |
| Calidris ferruginea     | curlew sandpiper        |                | Y               |                    |
| Calidris melanotos      | pectoral sandpiper      |                | Y               |                    |
| Calidris ruficollis     | red-necked stint        |                | Y               |                    |
| Ceyx azureus            | azure kingfisher        | Y              | Y               |                    |
| Ceyx pusillus           | little kingfisher       | Y              | Y               |                    |

| Scientific name                    | Common name                          | R <sup>1</sup> | NR <sup>1</sup> | Panel comments                                                                                                                                                                                  |
|------------------------------------|--------------------------------------|----------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Charadrius dubius                  | little ringed plover                 |                | Y               | Vagrant occurrence                                                                                                                                                                              |
| Charadrius ruficapillus            | red-capped plover                    |                | Y               |                                                                                                                                                                                                 |
| Charadrius veredus                 | Oriental plover                      |                | Y               |                                                                                                                                                                                                 |
| Chenonetta jubata                  | Australian wood duck                 | Y              | Y               |                                                                                                                                                                                                 |
| Chlidonias hybrida                 | whiskered tern                       | Y              | Y               |                                                                                                                                                                                                 |
| Chlidonias leucopterus             | white-winged black tern              | Y              | Y               |                                                                                                                                                                                                 |
| Chroicocephalus<br>novaehollandiae | silver gull                          | Y              | Y               |                                                                                                                                                                                                 |
| Circus approximans                 | swamp harrier                        |                | Y               |                                                                                                                                                                                                 |
| Cisticola exilis                   | golden-headed cisticola              | Y              | Y               |                                                                                                                                                                                                 |
| Cisticola juncidis normani         | Zitting cisticola (Normanton subsp.) |                | Y               | Endemic subspecies                                                                                                                                                                              |
| Cygnus auratus                     | black swan                           | Y              | Y               |                                                                                                                                                                                                 |
| Dendrocygna arcuata                | wandering whistling-duck             | Y              | Y               |                                                                                                                                                                                                 |
| Dendrocygna eytoni                 | plumed whistling-duck                | Y              | Y               |                                                                                                                                                                                                 |
| Dendrocygna guttata                | spotted whistling-duck               | Y              | Y               | Vagrant occurrence                                                                                                                                                                              |
| Egretta garzetta                   | little egret                         | Y              | Y               |                                                                                                                                                                                                 |
| Egretta novaehollandiae            | white-faced heron                    | Y              | Y               |                                                                                                                                                                                                 |
| Egretta picata                     | pied heron                           | Y              | Y               |                                                                                                                                                                                                 |
| Elanus scriptus                    | letter-winged kite                   | Y              | Y               | Boom and bust species. After rain, it breeds<br>along creek lines. Lives in floodplains along<br>creeks and around waterholes. Nest in<br>riparian trees/shrubs                                 |
| Elseyornis melanops                | black-fronted dotterel               | Y              | Y               |                                                                                                                                                                                                 |
| Ephippiorhynchus asiaticus         | black-necked stork                   | Y              | Y               |                                                                                                                                                                                                 |
| Epthianura crocea                  | yellow chat                          |                | Y               |                                                                                                                                                                                                 |
| Erythrogonys cinctus               | red-kneed dotterel                   | Y              | Y               |                                                                                                                                                                                                 |
| Erythrotriorchis radiatus          | red goshawk                          | Y              | Y               | Breeding within 1km of river. Hunting within<br>100m of river. A major part of red goshawk's<br>life cycle is dependent upon freshwater<br>habitats. Non-riverine wetlands used for<br>breeding |
| Eulabeornis castaneoventris        | chestnut rail                        | Y              | Y               |                                                                                                                                                                                                 |
| Fulica atra                        | Eurasian coot                        | Y              | Y               |                                                                                                                                                                                                 |

| Scientific name                 | Common name                              | R <sup>1</sup> | NR <sup>1</sup> | Panel comments                                                                                                                                                |
|---------------------------------|------------------------------------------|----------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gallinago hardwickii            | Latham's snipe                           | Y              | Y               | Normanton area record (Roger Jaensch)                                                                                                                         |
| Gallinago megala                | Swinhoe's snipe                          | Y              | Y               | Normanton area record (Roger Jaensch)                                                                                                                         |
| Gallinula tenebrosa             | dusky moorhen                            | Y              | Y               |                                                                                                                                                               |
| Gallirallus philippensis        | buff-banded rail                         | Y              | Y               |                                                                                                                                                               |
| Gelochelidon nilotica           | gull-billed tern                         | Y              | Y               |                                                                                                                                                               |
| Glareola maldivarum             | Oriental pratincole                      |                | Y               | Many thousands can gather in open shallow<br>wetlands for drinking/resting in the hot<br>middle part of the day; recorded on Karumba<br>Plain (Roger Jaensch) |
| Grus antigone                   | sarus crane                              |                | Y               |                                                                                                                                                               |
| Grus rubicunda                  | brolga                                   | Y              | Y               | Swampy watercourses                                                                                                                                           |
| Haliaeetus leucogaster          | white-bellied sea-eagle                  | Y              | Y               |                                                                                                                                                               |
| Haliastur indus                 | brahminy kite                            | Y              | Y               |                                                                                                                                                               |
| Himantopus himantopus           | black-winged stilt                       | Y              | Y               |                                                                                                                                                               |
| Hydroprogne caspia              | Caspian tern                             | Y              | Y               |                                                                                                                                                               |
| Irediparra gallinacea           | comb-crested jacana                      | Y              | Y               |                                                                                                                                                               |
| Ixobrychus dubius               | Australian little bittern                | Y              | Y               |                                                                                                                                                               |
| Ixobrychus flavicollis          | black bittern                            | Y              | Y               |                                                                                                                                                               |
| Lewinia pectoralis              | Lewin's rail                             | Y              | Y               |                                                                                                                                                               |
| Limosa limosa                   | black-tailed godwit                      |                | Y               |                                                                                                                                                               |
| Malacorhynchus<br>membranaceus  | pink-eared duck                          | Y              | Y               |                                                                                                                                                               |
| Megalurus gramineus             | little grassbird                         | Y              | Y               |                                                                                                                                                               |
| Megalurus timoriensis           | tawny grassbird                          | Y              | Y               |                                                                                                                                                               |
| Microcarbo melanoleucos         | little pied cormorant                    | Y              | Y               |                                                                                                                                                               |
| Myiagra alecto                  | shining flycatcher                       | Y              |                 | Riparian habitat                                                                                                                                              |
| Myiagra nana                    | paperbark flycatcher                     | Y              |                 | Riparian habitat dependent                                                                                                                                    |
| Neochmia phaeton<br>evangelinae | Crimson finch (white-<br>bellied subsp.) | Y              | Y               | Feeds and nests in riparian habitat                                                                                                                           |
| Neochmia phaeton phaeton        | crimson finch                            | Y              | Y               | Feeds and nests in riparian habitat                                                                                                                           |
| Nettapus coromandelianus        | cotton pygmy-goose                       | Y              | Y               |                                                                                                                                                               |
| Nettapus pulchellus             | green pygmy-goose                        | Y              | Y               |                                                                                                                                                               |

| Scientific name               | Common name              | R <sup>1</sup> | NR <sup>1</sup> | Panel comments                                                                                                                                                                                                       |
|-------------------------------|--------------------------|----------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Numenius minutus              | little curlew            |                | Y               | Many thousands occur on Karumba Plain<br>using the <i>Xerochloa</i> grasslands and included<br>non-riverine grass-sedge wetlands, on a<br>daily basis in the Wet season, though with<br>erratic abundance and timing |
| Nycticorax caledonicus        | nankeen night-heron      | Y              | Y               |                                                                                                                                                                                                                      |
| Pandion cristatus             | eastern osprey           | Y              | Y               |                                                                                                                                                                                                                      |
| Pelecanus conspicillatus      | Australian pelican       | Y              | Y               |                                                                                                                                                                                                                      |
| Phalacrocorax carbo           | great cormorant          | Y              | Y               |                                                                                                                                                                                                                      |
| Phalacrocorax sulcirostris    | little black cormorant   | Y              | Y               |                                                                                                                                                                                                                      |
| Phalacrocorax varius          | pied cormorant           | Y              | Y               |                                                                                                                                                                                                                      |
| Phalaropus fulicarius         | grey phalarope           |                | Y               | Vagrant occurrence                                                                                                                                                                                                   |
| Platalea flavipes             | yellow-billed spoonbill  | Y              | Y               |                                                                                                                                                                                                                      |
| Platalea regia                | royal spoonbill          | Y              | Y               |                                                                                                                                                                                                                      |
| Plegadis falcinellus          | glossy ibis              | Y              | Y               |                                                                                                                                                                                                                      |
| Pluvialis fulva               | Pacific golden plover    |                | Y               |                                                                                                                                                                                                                      |
| Podiceps cristatus            | great crested grebe      | Y              | Y               |                                                                                                                                                                                                                      |
| Poliocephalus poliocephalus   | hoary-headed grebe       | Y              | Y               |                                                                                                                                                                                                                      |
| Porphyrio porphyrio           | purple swamphen          | Y              | Y               |                                                                                                                                                                                                                      |
| Porzana fluminea              | Australian spotted crake | Y              | Y               |                                                                                                                                                                                                                      |
| Porzana pusilla               | Baillon's crake          | Y              | Y               |                                                                                                                                                                                                                      |
| Porzana tabuensis             | spotless crake           | Y              | Y               |                                                                                                                                                                                                                      |
| Rallina tricolor              | red-necked crake         |                | Y               |                                                                                                                                                                                                                      |
| Recurvirostra novaehollandiae | red-necked avocet        |                | Y               |                                                                                                                                                                                                                      |
| Rhipidura dryas               | Arafura fantail          | Y              |                 | Riparian habitat                                                                                                                                                                                                     |
| Rostratula australis          | Australian painted snipe |                | Y               | Recorded on Karumba Plain (Roger<br>Jaensch)                                                                                                                                                                         |
| Stictonetta naevosa           | freckled duck            | Y              | Y               | Recorded in small numbers on the seasonal swamps on Karumba Plain (Roger Jaensch)                                                                                                                                    |
| Tachybaptus novaehollandiae   | Australasian grebe       | Y              | Y               |                                                                                                                                                                                                                      |
| Tadorna radjah                | radjah shelduck          | Y              | Y               |                                                                                                                                                                                                                      |
| Threskiornis molucca          | Australian white ibis    | Y              | Y               |                                                                                                                                                                                                                      |

| Scientific name          | Common name             | R <sup>1</sup> | NR <sup>1</sup> | Panel comments |
|--------------------------|-------------------------|----------------|-----------------|----------------|
| Threskiornis spinicollis | straw-necked ibis       | Y              | Y               |                |
| Tribonyx ventralis       | black-tailed native-hen | Y              | Y               |                |
| Tringa glareola          | wood sandpiper          |                | Y               |                |
| Tringa nebularia         | common greenshank       | Y              | Y               |                |
| Tringa stagnatilis       | marsh sandpiper         | Y              | Y               |                |
| Vanellus miles           | masked lapwing          | Y              | Y               |                |

R = Riverine, NR = Non-riverine.

## 4.2.5 Mammal richness

Only five mammal taxa were considered by the panel to be aquatic dependent and relevant to the riverine and non-riverine wetlands of the study areas (Table 11).

Point records for the listed species were used to pinpoint spatial units containing mammal taxa to calculate species richness scores for the AquaBAMM measure 3.1.7 (Richness of native aquatic dependent mammals).

|--|

| Scientific name          | Common name                      | R <sup>1</sup> | NR <sup>1</sup> | Panel comments                                                                                                    |
|--------------------------|----------------------------------|----------------|-----------------|-------------------------------------------------------------------------------------------------------------------|
| Hydromys chrysogaster    | water rat                        | Y              | Y               |                                                                                                                   |
| Myotis macropus          | large-footed myotis              | Y              | Y               |                                                                                                                   |
| Ornithorhynchus anatinus | platypus                         | Y              | Y               | Upper Mitchell is the only Gulf river<br>distribution of this species. Consider<br>nominating as priority species |
| Pipistrellus westralis   | northern/mangrove<br>pipistrelle | Y              |                 |                                                                                                                   |
| Rattus lutreolus         | swamp rat                        | Y              | Y               |                                                                                                                   |

<sup>1</sup> R = Riverine, NR = Non-riverine.

#### 4.2.6 Macroinvertebrate richness

The panel advised against use of wetland-dependent macroinvertebrate taxa lists to calcuate macroinvertebrate diversity for the study areas. They based this recommendation on the lack of detailed macroinvertebrate surveys across the region. The expert panel instead suggested the use of maximum richness scores based on higher-level macroinvertebrates studies undertaken using recognised survey and analysis methods (i.e. such as those use dby by Conrick & Cockayne 2000, Chessman 2003, and Healthy Waterways 2012). While such methods estimate macroinvertebrate diversity at the broad taxonomic group level (e.g. sub-family, family, order or class), the view of the panel was that such an approach would provide a more realistic representation of macroinvertebrate richness for the study areas.

While specific taxa were not listed for AquaBAMM measure 3.2.1, experts were still invited to nominate individual Priority macroinvertebrate species for measure 5.1.1 (See section 3.4.1).

Maximum macroinvertebrate richness values were used to estimate macroinvertebrate richness for AquaBAMM measure 3.2.1 (Richness of macroinvertebrate taxa).

## 4.3 Near threatened and threatened fauna

The panel identified 17 near threatened or threatened fauna taxa relevant to the riverine and non-riverine wetlands of the study areas (Table 12). Only species judged to be aquatic, semi-aquatic or riparian dependent and scheduled as near threatened, vulnerable, endangered, or critically endangered under the Queensland *Nature Conservation Act 1992* or the Commonwealth *Environment Protection and Biodiversity Conservation Act 1999* were considered.

Point records for the listed species were used to pinpoint spatial units containing near threatened or threatened fauna taxa to calculate scores for the AquaBAMM measure 4.1.1 (Presence of rare or threatened aquatic ecosystem dependent fauna species — NCA, EPBC Act).

| Scientific name              | Common name                              | R <sup>1</sup> | NR <sup>1</sup> | NCA <sup>2</sup> | EPBC <sup>3</sup> | Panel comments                                                                                                                                                                                            |  |  |
|------------------------------|------------------------------------------|----------------|-----------------|------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Fish                         |                                          |                |                 |                  |                   |                                                                                                                                                                                                           |  |  |
| Pristis pristis              | freshwater sawfish                       | Y              | Y               |                  | V                 |                                                                                                                                                                                                           |  |  |
| Amphibian                    |                                          |                |                 |                  |                   |                                                                                                                                                                                                           |  |  |
| Litoria dayi                 | Australian lacelid                       | Y              |                 | E                | E                 |                                                                                                                                                                                                           |  |  |
| Litoria lorica               | little waterfall frog                    | Υ              |                 | E                | CE                |                                                                                                                                                                                                           |  |  |
| Litoria myola                | Kuranda treefrog                         | Y              |                 | E                | E                 |                                                                                                                                                                                                           |  |  |
| Litoria nannotis             | waterfall frog                           | Y              |                 | E                | E                 |                                                                                                                                                                                                           |  |  |
| Litoria nyakalensis          | mountain mistfrog                        | Υ              |                 | E                | CE                |                                                                                                                                                                                                           |  |  |
| Litoria rheocola             | common mistfrog                          | Υ              |                 | E                | E                 |                                                                                                                                                                                                           |  |  |
| Litoria serrata              | tapping green-eyed<br>treefrog           | Y              |                 | V                |                   |                                                                                                                                                                                                           |  |  |
| Pseudophryne covacevichae    | magnificent broodfrog                    |                | Υ               | V                | V                 |                                                                                                                                                                                                           |  |  |
| Taudactylus rheophilus       | northern tinkerfrog                      | Υ              |                 | E                | Е                 |                                                                                                                                                                                                           |  |  |
| Reptile                      |                                          |                |                 |                  |                   |                                                                                                                                                                                                           |  |  |
| Crocodylus porosus           | estuarine crocodile                      | Y              | Y               | V                |                   |                                                                                                                                                                                                           |  |  |
| Emydura subglobosa worrelli  | diamond head turtle                      | Y              | Y               | NT               |                   |                                                                                                                                                                                                           |  |  |
| Bird                         |                                          |                |                 |                  |                   |                                                                                                                                                                                                           |  |  |
| Calidris ferruginea          | curlew sandpiper                         |                | Y               | E                | CE                |                                                                                                                                                                                                           |  |  |
| Epthianura crocea            | yellow chat                              |                | Y               | V                |                   |                                                                                                                                                                                                           |  |  |
| Erythrotriorchis radiatus    | red goshawk                              | Y              | Y               | E                | V                 | Breeding within 1km of<br>river. Hunting within 100m<br>of river. A major part of red<br>goshawk's life cycle is<br>dependent upon<br>freshwater habitats. Non-<br>riverine wetlands used for<br>breeding |  |  |
| Neochmia phaeton evangelinae | Crimson finch (white-<br>bellied subsp.) | Y              | Y               | E                | V                 |                                                                                                                                                                                                           |  |  |

| Scientific name      | Common name              | R <sup>1</sup> | NR <sup>1</sup> | NCA <sup>2</sup> | EPBC <sup>3</sup> | Panel comments |
|----------------------|--------------------------|----------------|-----------------|------------------|-------------------|----------------|
| Rostratula australis | Australian painted snipe | Y              | Y               | V                | E                 |                |

 $^{1}$  R = Riverine, NR = Non-riverine.

<sup>2</sup>NCA—Queensland Nature Conservation Act 1992: E = endangered, V = vulnerable, NT = near threatened, LC = least concern.

 $^{3}$  EPBC—Commonwealth Environment Protection and Biodiversity Conservation Act 1999: Ex= extinct, CE = critically endangered, E = endangered, V = vulnerable.

# 4.4 Priority fauna

The panel deliberated on all aquatic-dependent fauna species within the study areas to identify priority fauna. Priority taxa are defined as those not listed as critically endangered, endangered, vulnerable or near threatened under Queensland or Commonwealth legislation but are considered significant within the study region as they exhibit one or more of the following attributes:

- 1. It is endemic to the study area (>75% of its distribution is in the study area/catchment)
- 2. It has experienced, or is suspected of experiencing, a serious population decline
- 3. It has experienced a significant reduction in its distribution and has a naturally restricted distribution in the study area/catchment
- 4. It is currently a small population and threatened by loss of habitat
- 5. It is a significant disjunct population
- 6. It is a migratory species (other than birds)
- 7. A significant proportion of the breeding population (>1% for waterbirds, >75% other species) occurs in the waterbody (see Ramsar Criterion 6 for waterbirds)
- 8. Taxa vulnerable to impacts of climate change Species that are considered to be adversely affected by the predicted changes in climate, e.g. increasing temperatures, sea level rise and increasing frequency of extreme weather events (drought, flood & cyclones). Species can only be listed under this reason if there is sufficient knowledge of species' biology and its interaction with climate that would support an assessed impact under climate change scenarios.

#### 4.4.1 Priority species

The panel identified 41 priority fauna taxa relevant to the riverine and non-riverine wetlands of study areas (Table 13). Of these, nine were invertebrates (crustaceans and mollusc) and 32 were vertebrates (fish, amphibians, reptiles, birds and mammals).

Point records for the listed species were used to pinpoint spatial units containing priority fauna taxa to calculate scores for the AquaBAMM measure 5.1.1 (Presence of aquatic ecosystem dependent 'priority' fauna species).

| Scientific name                 | Common name         | R1 | NR <sup>1</sup> | Priority<br>number <sup>2</sup> | Panel comments                                                                                                                                         |
|---------------------------------|---------------------|----|-----------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Invertebrate                    |                     |    |                 |                                 |                                                                                                                                                        |
| Austrothelphusa agassizi        |                     | Y  |                 | 8                               | Life history makes it susceptible to impacts of climate change/reduced water flow (Waltham 2016)                                                       |
| Austrothelphusa sp.             | Crab sp.            | Y  |                 | 8                               | Life history makes it susceptible to impacts of climate change/reduced water flow (Waltham 2016)                                                       |
| Austrothelphusa tigrina         |                     | Y  |                 | 1, 4, 5, 8                      | Localised distribution mainly in Alice River                                                                                                           |
| Austrothelphusa<br>transversa   | freshwater crab     | Y  |                 | 8                               | Life history makes it susceptible to impacts of climate change/reduced water flow (Waltham 2016)                                                       |
| Austrothelphusa wasselli        |                     | Y  |                 | 8                               | Life history makes it susceptible to impacts of climate change/reduced water flow (Waltham 2016)                                                       |
| Cherax depressus 'White<br>Mts' |                     | Y  | Y               | 1                               | Small streams. May be new spp. in White Mtns if so then should be priority species                                                                     |
| Cherax wasselli                 |                     | Y  |                 | 1, 4, 5                         | Found in Kuranda area then into Mitchell.<br>Population tends to be in upper Mitchell. Very<br>localised. At interface of uplands and human<br>impact. |
| Euastacus fleckeri              | freshwater crayfish | Y  |                 | 1?, 4, 5                        | Listed under IUCN. Approx 50% of species                                                                                                               |

#### Table 13. Aquatic dependent priority fauna taxa

| Scientific name          | Common name                              | R1 | NR <sup>1</sup> | Priority<br>number <sup>2</sup> | Panel comments                                                                                                                                                                                                                                                        |
|--------------------------|------------------------------------------|----|-----------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                                          |    |                 |                                 | distribution is in the Mitchell catchment.<br>Located predominately above 800m. There are<br>52 spp. in the genus. Evolutionary split                                                                                                                                 |
| Lamprellia angulata      | Copperfield River keeled snail           | Y  |                 | 1                               | Restricted to riparian habitat in Copperfield River                                                                                                                                                                                                                   |
| Fish                     |                                          |    |                 |                                 |                                                                                                                                                                                                                                                                       |
| Ambassis elongatus       | elongate glassfish                       | Y  | Y               | 1                               | Restricted to Gulf catchments                                                                                                                                                                                                                                         |
| Ambassis miops           | flagtail glassfish                       | Y  |                 | 5                               | Disjunct population. Unlikely to be in Gulf<br>(Brendan Ebner). Recorded by T. Vallance on<br>2 separate occasions at Mutton Hole Wetlands                                                                                                                            |
| Carcharhinus leucas      | bull shark                               | Y  |                 | 6                               | Top predator in freshwater, one of only 4.<br>Juveniles remain in freshwater for first 4 or 5<br>years and as adult, then move in to estuaries.<br>Migratory species in this context                                                                                  |
| Clupeoides cf. papuensis | Papuan<br>sprat/toothed river<br>herring | Y  | Y               | 5                               | Possible undescribed taxon                                                                                                                                                                                                                                            |
| Hephaestus fuliginosus   | sooty grunter                            | Y  | Y               | 6                               | Migratory within main channel. Uses riffles and runs as spawing grounds. Especially found in Mitchell                                                                                                                                                                 |
| Himantura dalyensis      | freshwater whipray                       | Y  |                 | 4                               | Poorly known. One of only 3-4 obligate<br>freshwater elasobrachii. Only freshwater<br>stingray in Australia. Grows to 2.5 m in<br>diameter and can be 5 m long. Gulf is<br>stronghold                                                                                 |
| Kurtus gulliveri         | nurseryfish                              | Y  | Y               | 1?, 4                           | Poorly known. Relictual. Puts eggs on head in<br>a hook. Very unusual reproduction strategies.<br>Primarily estuarine but also in freshwater.<br>Restricted to lower end of southern gulf<br>catchments. Considered potentially vulnerable<br>(Le Feuvre et al. 2016) |
| Lates calcarifer         | barramundi                               | Y  | Y               | 6                               | Massive abundance and also migratory                                                                                                                                                                                                                                  |
| Leiopotherapon unicolor  | spangled perch                           | Y  | Y               | 6                               | Flood colonist species. Persists where others can't (Brendan Ebner).                                                                                                                                                                                                  |
| Neosilurus ater          | black catfish                            | Y  | Y               | 6                               | Moves in to ephemeral creeks to breed<br>(Brendan Ebner)                                                                                                                                                                                                              |
| Neosilurus hyrtlii       | Hyrtl's catfish                          | Y  | Y               | 6                               | Moves in to ephemeral creeks to breed<br>(Brendan Ebner)                                                                                                                                                                                                              |
| Neosilurus sp.           | Eel-tailed catfish sp.                   | Y  | Y               | 6                               | Migratory upstream within freshwater to breeding areas                                                                                                                                                                                                                |
| Pingalla gilberti        | Gilbert's grunter                        | Y  |                 | 1                               | Endemic to study areas                                                                                                                                                                                                                                                |
| Porochilus sp. 3         | Delta Downs catfish sp.                  | Y  | Y               | 1                               | Endemic, undescribed taxon of conservation concern (Mike Hammer)                                                                                                                                                                                                      |
| Porochilus sp. Flinders  | Flinders River catfish sp.               | Y  |                 | 1                               | Endemic, undescribed taxon? Biggest species in the genus in Indopacific                                                                                                                                                                                               |

| Scientific name               | Common name                             | R <sup>1</sup> | NR <sup>1</sup> | Priority<br>number <sup>2</sup> | Panel comments                                                                                                                                                                                                                                     |
|-------------------------------|-----------------------------------------|----------------|-----------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scortum ogilbyi               | gulf grunter                            | Y              | Y               | 1                               | Endemic to study areas                                                                                                                                                                                                                             |
| Strongylura krefftii          | freshwater longtom                      | Y              | Y               | 6                               | Accesses range of habitats. Spawns under low<br>or no flow. Very unlike other species. (Brendan<br>Ebner)                                                                                                                                          |
| Thryssa scratchleyi           | freshwater thryssa                      | Y              | Y               | 5                               | Restricted range with important core habitat in southern Gulf (Mike Hammer)                                                                                                                                                                        |
| Variichthys lacustris         | lake grunter                            |                | Y               | 4, 5                            | Highly disjunct population; very limited<br>distribution. Possible indicator of a different<br>geomorphological wetland type. Warrants<br>further investigation/intensive surveys.<br>Considered potentially vulnerable (Le Feuvre<br>et al. 2016) |
| Amphibian                     |                                         |                |                 |                                 |                                                                                                                                                                                                                                                    |
| Cyclorana cryptotis           | earless frog                            |                | Y               | 5                               | Disjunct populations (EHP 2015a)                                                                                                                                                                                                                   |
| Cyclorana manya               | little collared frog                    |                | Y               | 1                               | Largely restricted to study area (EHP 2015a)                                                                                                                                                                                                       |
| Litoria dahlii                | northern waterfrog                      | Y              | Y               | 1, 8                            | Largely restricted to study area (EHP 2015a)                                                                                                                                                                                                       |
| Notaden nichollsi             | desert shovelfoot                       |                | Y               | 4, 5                            | Small disjunct population (EHP 2015a)                                                                                                                                                                                                              |
| Reptile                       |                                         |                |                 |                                 |                                                                                                                                                                                                                                                    |
| Chelodina<br>oblonga/rugosa   | northern snake-<br>necked turtle        | Y              | Y               | 2                               | Impact of pig predation (Fordham et al. 2006)                                                                                                                                                                                                      |
| Varanus mertensi              | Mertens' water<br>monitor               | Y              | Y               | 2                               | Impacted by cane toads                                                                                                                                                                                                                             |
| Varanus mitchelli             | Mitchell's water<br>monitor             | Y              | Y               | 2                               | Impacted by cane toads                                                                                                                                                                                                                             |
| Bird                          |                                         |                |                 |                                 |                                                                                                                                                                                                                                                    |
| Calidris acuminata            | sharp-tailed<br>sandpiper               |                | Y               | 7                               |                                                                                                                                                                                                                                                    |
| Calidris ruficollis           | red-necked stint                        |                | Y               | 7                               |                                                                                                                                                                                                                                                    |
| Cisticola juncidis<br>normani | Zitting cisticola<br>(Normanton subsp.) |                | Y               | 1                               | Endemic subspecies confined to wetlands                                                                                                                                                                                                            |
| Limosa limosa                 | black-tailed godwit                     |                | Y               | 7                               |                                                                                                                                                                                                                                                    |
| Numenius minutus              | little curlew                           |                | Y               | 7                               |                                                                                                                                                                                                                                                    |
| Mammal                        |                                         |                |                 |                                 |                                                                                                                                                                                                                                                    |
| Ornithorhynchus<br>anatinus   | platypus                                | Y              | Y               | 4                               | Upper Mitchell is the only Gulf river distribution of this species                                                                                                                                                                                 |

 $^{1}$  R = Riverine, NR = Non-riverine.

<sup>2</sup> The priority number is the priority attributes exhibited by each species.

### 4.4.2 Migratory species

In addition to the priority species identified above, the panel nominated migratory species for inclusion in AquaBAMM measure 5.1.3. Only species listed under the Convention on Migratory Species (Bonn), Japan Australia Migratory Bird Agreement (JAMBA), the China Australia Migratory Bird Agreement (CAMBA), or Republic of Korea Australia Migratory Bird Agreement (ROKAMBA) as significant fauna taxa were considered.

The panel identified 25 migratory species relevant to the riverine and non-riverine wetlands of the study areas (Table 14).

Point records for the listed species were used to pinpoint spatial units containing migratory taxa to calculate the scores for the AquaBAMM measure 5.1.3 (Habitat for, or presence of, migratory species).

| SCIENTIFIC NAME        | COMMON NAME             | R <sup>1</sup> | NR <sup>1</sup> | MIGRATORY AGREEMENT            |  |  |  |  |
|------------------------|-------------------------|----------------|-----------------|--------------------------------|--|--|--|--|
| Fish                   |                         |                |                 |                                |  |  |  |  |
| Pristis pristis        | freshwater sawfish      | Y              | Y               | Bonn                           |  |  |  |  |
| Reptile                |                         |                |                 |                                |  |  |  |  |
| Crocodylus porosus     | estuarine crocodile     | Y              | Y               | Bonn                           |  |  |  |  |
| Bird                   |                         |                |                 |                                |  |  |  |  |
| Actitis hypoleucos     | common sandpiper        | Y              |                 | CAMBA / JAMBA / ROKAMBA / Bonn |  |  |  |  |
| Anas querquedula       | garganey                | Y              | Y               | CAMBA / JAMBA / ROKAMBA / Bonn |  |  |  |  |
| Calidris acuminata     | sharp-tailed sandpiper  |                | Y               | CAMBA / JAMBA / ROKAMBA / Bonn |  |  |  |  |
| Calidris ferruginea    | curlew sandpiper        |                | Y               | CAMBA / JAMBA / ROKAMBA / Bonn |  |  |  |  |
| Calidris melanotos     | pectoral sandpiper      |                | Y               | JAMBA / ROKAMBA / Bonn         |  |  |  |  |
| Calidris ruficollis    | red-necked stint        |                | Y               | CAMBA / JAMBA / ROKAMBA / Bonn |  |  |  |  |
| Charadrius dubius      | little ringed plover    |                | Y               | CAMBA / JAMBA / ROKAMBA        |  |  |  |  |
| Charadrius veredus     | Oriental plover         |                | Y               | CAMBA / JAMBA / ROKAMBA / Bonn |  |  |  |  |
| Chlidonias leucopterus | white-winged black tern | Y              | Y               | CAMBA / JAMBA / ROKAMBA        |  |  |  |  |
| Gallinago hardwickii   | Latham's snipe          | Y              | Y               | JAMBA / ROKAMBA / Bonn         |  |  |  |  |
| Gallinago megala       | Swinhoe's snipe         | Y              | Y               | CAMBA / JAMBA / ROKAMBA / Bonn |  |  |  |  |
| Gelochelidon nilotica  | gull-billed tern        | Y              | Y               | САМВА                          |  |  |  |  |
| Glareola maldivarum    | Oriental pratincole     |                | Y               | CAMBA / JAMBA / ROKAMBA        |  |  |  |  |
| Hydroprogne caspia     | Caspian tern            | Y              | Y               | JAMBA                          |  |  |  |  |
| Limosa limosa          | black-tailed godwit     |                | Y               | CAMBA / JAMBA / ROKAMBA / Bonn |  |  |  |  |
| Numenius minutus       | little curlew           |                | Y               | CAMBA / JAMBA / ROKAMBA / Bonn |  |  |  |  |
| Pandion cristatus      | eastern osprey          | Y              | Y               | Bonn                           |  |  |  |  |
| Phalaropus fulicarius  | grey phalarope          |                | Y               | Bonn                           |  |  |  |  |
| Plegadis falcinellus   | glossy ibis             | Y              | Y               | Bonn                           |  |  |  |  |

| Pluvialis fulva    | Pacific golden plover |   | Y | CAMBA / JAMBA / ROKAMBA / Bonn |
|--------------------|-----------------------|---|---|--------------------------------|
| Tringa glareola    | wood sandpiper        |   | Y | CAMBA / JAMBA / ROKAMBA / Bonn |
| Tringa nebularia   | common greenshank     | Y | Y | CAMBA / JAMBA / ROKAMBA / Bonn |
| Tringa stagnatilis | marsh sandpiper       | Y | Y | CAMBA / JAMBA / ROKAMBA / Bonn |

 $^{1}$  R = Riverine, NR = Non-riverine.

# 5 Special Features

# 5.1 Special Features

The panel identified flora, fauna and ecology special features relevant to the riverine and non-riverine wetlands of each study area. Where a single special feature decision crossed a number of study areas, the decision has been duplicated for each study area. Each special feature was assigned a conservation rating between 1 (Low) and 4 (Very High). Areas having multiple values (e.g. flora and fauna values) were consolidated and implemented as ecology special feature decisions. Decisions that were not able to be implemented due to a lack of readily available data or unconfirmed values are indicated as "Not Implemented" in the special feature tables.

Special features are used to calculate scores for the AquaBAMM measures 5.1.4 (Habitat for significant numbers of waterbirds), 5.2.1 (Presence of 'priority' aquatic ecosystem), 6.1.1 (Presence of distinct, unique or special geomorphic features), 6.2.1 (Presence of or requirement for distinct, unique or special ecological processes), 6.3.1 (Presence of distinct, unique or special habitat, including habitat that functions as refugia or other critical purpose), 6.3.3 (Ecologically significant wetlands identified through expert opinion and/or documented study), 6.3.4 (Areas important as refugia from the predicted effects of climate change (e.g. source of species re-population), 6.4.1 (Presence of distinct, unique or special hydrological regimes, e.g. spring fed stream, ephemeral stream or boggomoss), and 8.2.5 (Wetland type representative of the study area).

The non-riverine and riverine special features are listed in Table 15 and Table 16 respectively. Each feature may have fauna, flora and/or ecology values, either singularly or in combination. Where appropriate, special feature decisions were derived from the Gulf Plains, Cape York Peninsula and Einasleigh Uplands Biodiverosty Plannign Assessments (DERM 2009a,b; EHP 2012b,c; 2015a,b).

#### Table 15. Non riverine special features and their values

| Special Feature<br>Name |                                                                                 | Study Area          | fa | fl | ес | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CIM            | Cons.<br>Rating | Special<br>Feature ID      |
|-------------------------|---------------------------------------------------------------------------------|---------------------|----|----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|----------------------------|
| Sandstone tablelands    | Giberon     Env Swarp       Brekbruse     Sregory       Hampstood     Stevellon | Flinders<br>Gilbert |    |    | Y  | These sandstone tablelands are located in the<br>upper part of the Flinders Norman and Gilbert<br>catchments contain nested wetlands which are<br>characteristic and unusual. The full extent of<br>some of the large lakes in the region doesn't<br>currently appear in the wetland mapping. There<br>are no other wetlands like this in the catchment.<br>This is the greatest remaining extent of these<br>plateau sandstone systems in Queensland. The<br>geomorphology of the area is unique and it is<br>thought to also contain unique ecological values.<br>This is an area that would benefit from more<br>study. | 6.1.1<br>6.2.1 | 3 3             | fl_nr_ec_01<br>gi_nr_ec_12 |

| Soda Valley area                | Fib Mile<br>Grank | Flinders | Y | Y | The Soda Valley area contains a significant local<br>cluster of unique sodic springs in upper<br>tributaries. Currently there are no springs<br>mapped in the wetlands mapping for this area.<br>The palustrine wetlands covered by this special<br>area contain regional ecosystem RE 9.3.10.<br>Additionally the springs in this region discharge<br>on shale not basalt which is unlike other basalt<br>springs in the area. | 6.1.1<br>6.4.1          | 33          | fl_nr_ec_02 |
|---------------------------------|-------------------|----------|---|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------|-------------|
| Flinders River near<br>Marathon | Richmond          | Flinders |   | Y | This section of the Flinders River contains first<br>time braided systems that appear deeply<br>incised. The area experiences lateral<br>connectivity and provides refugia in and around<br>the semi-permanent/permanent waterbodies.                                                                                                                                                                                           | 6.1.1<br>6.3.1<br>6.3.4 | 3<br>3<br>3 | fl_nr_ec_03 |

| Intersection of<br>Flinders & Saxby<br>Rivers | Plain Creek Inverleigh East Haydon<br>Macalister Milgarra<br>Neumayer: Warren Vale<br>Bang Bang<br>Talayanta Wondoola Vena Park<br>Iffiey<br>Cowan Downs<br>Murung<br>Kamileroi Taldora | Flinders | Υ | Y | The intersection of the Flinders and Saxby rivers<br>has a good diversity and concentration of deep<br>waterholes within the drainage channel. These<br>waterholes provide refugia and habitat that are<br>connected to the estuarine systems making<br>them important for fish migration and spawning.<br>There is also high potential for waterbird<br>colonies of sarus crane <i>Grus antigone</i> pelican<br><i>Pelecanus conspicillatus</i> black-necked stork<br><i>Ephippiorhynchus asiaticus</i> and brolga <i>Grus</i><br><i>rubicunda</i> . | 6.3.1<br>6.3.4<br>7.1.2 | 4 4 4 | fl_nr_ec_05 |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|-------------|
| Washpool Lagoon<br>complex                    | Lily Pond                                                                                                                                                                               | Flinders | Y | Y | The Washpool Lagoon complex is formed by a constriction from the shale hills and sand sheets. The complex is the best development of deep pools and braiding on the Flinders River. With good lateral connectivity persistent waterholes and a large concentration of palustrine systems the area contains significant ecological values.                                                                                                                                                                                                             | 6.2.1                   | 4     | fl_nr_ec_06 |

| Wetlands fed by<br>Great Artesian Basin<br>springs (Fensham et<br>al. 2006 - Class 1 &<br>2) | Karugpa           Normanton           Goorgadown           Goorgadown           Concurry           Julia Creek           Richmond           Highbury           Biokstown           Biokstown | Flinders<br>Gilbert<br>Mitchell<br>Norman<br>Staaten |  | Y | Springs of the Great Artesian Basin feed<br>permanent wetlands that provide oases for<br>unique aquatic life forms in otherwise dry<br>landscapes. For example, an abundance of<br>specialised invertebrates including ostracods,<br>snails, spiders, flatworms and dragonflies are<br>known to occur only in wetlands associated with<br>GAB springs. Likewise, certain grass, herb and<br>sedge species are often restricted to wetlands<br>associated with GAB springs (Fensham 2006).<br>Note: This decision applies to all catchments<br>assessed as part of the EGoC ACA v1.1. In arid<br>environments, a spring with a permanent<br>saturation regime and fixed spatial location may<br>only support surface expression groundwater<br>dependent ecosystems extending less than one<br>hectare from the spring vent. For this reasons a<br>standard distance of 100m was used to identify<br>the location and extent of wetlands dependent<br>upon spring flows. In reality this distance will<br>vary depending on local hydrological<br>characteristics, spring flow rates and extent. | 6.3.1<br>6.3.4<br>7.2.1 | 4 4 4 | fl_nr_ec_08<br>ml_nr_ec_17<br>nn_nr_ec_06 |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|-------------------------------------------|
|                                                                                              | Cabana<br>Mount Tarner<br>Forest Home<br>Georgetown<br>Cabana<br>Mount<br>Surprise<br>Cabana<br>Surprise<br>Round Mountain<br>Wyoming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |       |                                           |

|                                                                  | Croydon Inorunie Mount Turner<br>Rivert Forest Home<br>Rivert Forest Home<br>Fore<br>Cockatoo<br>Creek<br>Delham<br>Malpas<br>Valitan |                                                      |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |     |                                                                         |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|-------------------------------------------------------------------------|
| Transitional areas<br>adjacent to estuarine<br>zone (Landzone 1) | Elinders         Elinders         Elinders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Flinders<br>Gilbert<br>Mitchell<br>Norman<br>Staaten | Y | Y | Coastal wetlands of the north eastern Gulf are<br>recognised to be vulnerable to impacts<br>associated with predicted sea level rise (Close et<br>al. 2012). Freshwater wetlands that occur at the<br>tidal interface are particularly vulnerable.<br>Unhindered landward migration of coastal<br>wetland complexes in response to sea level rise<br>presents some opportunity for the maintenance<br>of habitat values and ecological processes<br>associated with these ecosystems (Lovelock et<br>al. 2012). Coastal floodplains that can<br>accommodate the landward migration of these<br>wetlands are the focus of this value decision.<br>These will be areas where seasonal freshwater -<br>brackish swamps (important to waterbirds and<br>migratory waders (6.3.1) can still form under<br>conditions of higher sea level and where<br>mangroves and other marine vegetation can<br>establish landward of the current tidal influence<br>boundary. Discharge zones around edge of<br>sands are likely to be particularly important as<br>transitional refugia for waterbirds as sea level<br>rises (6.3.4). Two coastal floodplain regional<br>ecosystems have been identified as defining<br>these areas RE 2.3.1b: Mixed tussock<br>grasslands occurring on raised sandy or silty<br>areas adjacent to the tidal zone with many<br>depressions or distributary channels and RE<br>2.3.59a: Mixed tall open shrubland occurring on<br>coastal alluvial surfaces adjacent to the tidal | 6.3.1<br>6.3.4 | 4 4 | fl_nr_ec_10<br>gi_nr_ec_06<br>ml_nr_ec_14<br>nn_nr_ec_11<br>sn_nr_ec_07 |

| Lotus Vale          |  | zone. |  |  |
|---------------------|--|-------|--|--|
| South               |  |       |  |  |
| Rowanyama<br>Planse |  |       |  |  |
| Galbreith           |  |       |  |  |



| Impoundments and<br>Reservoirs (e.g.<br>Chinaman Creek<br>Dam Lake Fred<br>Tritton & Corella<br>Dam) | Cloncurry putilia Creek Richmond | Flinders<br>Gilbert<br>Mitchell<br>Norman<br>Staaten | Y | Y | Impoundments and reservoirs were identified<br>because of their potential to contain ecological<br>values including refugia for some native fish<br>habitat, for birds' persistence in a dry<br>environment and the provision of system<br>recharge after drought. However these areas<br>often do not have good genetic diversity with<br>many species present having been stocked. The<br>genetics of native fish is mixed with gene pools<br>from disparate areas. | 5.1.4<br>6.3.1<br>6.3.4 | 2<br>2<br>2 | fl_nr_ec_14<br>gi_nr_ec_16<br>nn_nr_ec_08 |
|------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------|---|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------|-------------------------------------------|
|                                                                                                      | jetistop                         |                                                      |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |             |                                           |

| Bylong sand plain | Millungera<br>Lily Pord | Flinders<br>Norman |  | Y | The Bylong sand plain is an old level sand plain<br>with depressions that are like windows through<br>to clay. The area contains many distinct surfaces<br>including intact sand and redistributed material.<br>The area is like an island in the landscape. It<br>contains significant seasonal wetland values. | 6.1.1 | 3 | fl_nr_ec_16<br>nn_nr_ec_02 |
|-------------------|-------------------------|--------------------|--|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---|----------------------------|

|                               | Nyola<br>Taidora<br>Lyriah<br>Arizona<br>Numil Downs<br>Etta Plains Millungera<br>Balootha |                    |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |             |                            |
|-------------------------------|--------------------------------------------------------------------------------------------|--------------------|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------|----------------------------|
| Springs on recent<br>alluvium | dilin Creek<br>Richmond                                                                    | Flinders<br>Norman | Y | Y | RE 2.3.39 springs on recent alluvium is a<br>palustrine wetland regional ecosystem that has<br>an Endangered VMA and biodiversity status<br>(5.2.1) and is rare within the Gulf Plains. It is<br>comprised of <i>Aristida hygrometrica</i> or <i>Eriachne</i><br><i>mucronata</i> or <i>Oxychloris</i> spp. tussock grassland<br>with <i>Eucalyptus camaldulensis</i> +/- <i>Pandanus</i><br><i>tectorius</i> woodland or <i>Eucalyptus microtheca</i><br>woodland or <i>Corymbia confertiflora</i> woodland.<br>The RE includes special geomorphic features<br>(6.1.1) including active artesian springs and also<br>often extinct mound springs (6.4.1) and rare<br>examples of peat development (6.2.1) in tropical<br>environments. Values associated with these<br>springs have been documented in a number of<br>studies (6.3.3) (Fairfax & Fensham 2002;<br>Fensham et al. 2004). In some instances the<br>springs are discharging to deep red sands (RE<br>2.5.27) which surround and seep to the<br>palustrine wetland occurrence. Springs are a<br>very ecologically important in the arid landscape<br>in which they occur providing primary<br>productivity and refugia (6.3.1) for dependent<br>wildlife. | 5.2.1<br>6.1.1<br>6.2.1<br>6.3.3<br>6.4.1 | 4 4 4 4 4 4 | fl_nr_ec_18<br>nn_nr_ec_14 |

|                                                                                                           | Ciemora<br>Fog Creek<br>Cockatoo<br>Creek<br>Peliam<br>Malpas |                                                      |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |                       |                                                                         |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|---|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------|
| Coastal wetlands of<br>the Southern Gulf<br>Southeast Karumba<br>Plain and Macaroni<br>Swamp Aggregations | Finders                                                       | Flinders<br>Gilbert<br>Mitchell<br>Norman<br>Staaten | Y | Y | Y | These coastal wetlands form part of three<br>nationally important directory listed aggregations<br>(6.3.2) (Southern Gulf Southeast Karumba Plain<br>and Macaroni Swamp Aggregations) that lie<br>within the Karumba Plains province or the<br>adjoining coastal zone of the Gulf bioregion<br>(Blackman et al. 1999). The significance of these<br>aggregations has been reiterated by NAWFA<br>expert panel assessments across all of northern<br>Australia (6.3.3) (Kennard et al. 2011). Occurring<br>in the coastal zone the form and function of<br>these wetlands represents the outcomes of the<br>dominating influences of tidal action and<br>massive freshwater flooding in the wet season<br>(6.2.1). Salinity regimes of many of the wetlands<br>vary from fresh to saline. Palustrine and<br>lacustrine components of these aggregations<br>include a diverse range of types and habitats<br>including brackish and freshwater swamps and<br>lagoons semi-permanent freshwater lakes beach<br>ridge swale swamps tree swamps sedgelands<br>open water habitats and floating rooted<br>submerged and emergent aquatic macrophyte<br>beds. The listed aggregations also include<br>extensive estuarine marine and some lower<br>riverine wetlands. While the broader<br>aggregations meet all six criteria for national<br>directory listing five are met by the palustrine<br>and lacustrine components with most values<br>also being relevant to the EGoC ACA. These | 5.1.4<br>6.1.1<br>6.2.1<br>6.3.1<br>6.3.3<br>6.3.4<br>6.4.1 | 4<br>4<br>4<br>3<br>4 | fl_nr_ec_19<br>gi_nr_ec_15<br>ml_nr_ec_13<br>nn_nr_ec_16<br>sn_nr_ec_06 |

| <ul> <li>Include presence of distance swale with exceptionally well developed the control of the systems and la seasonal lacustrine habitat numerous prior channels a depressions formed in Qua associated with the Mitchel province of the Gulf. Many also function as refugia and purposes (6.3.1) including important populations of the Directing and posts breeding significant populations of winursery habitat for commer Areas within the aggregatic important transitional habits species during predicted as within creates on of the la seasonally inundated grass unique transitional community pically freshwater macrop brackish areas (6.2.1).</li> </ul> | swamps associated<br>eloped Holocene<br>urge areas of<br>s formed in the<br>nd drainage<br>ternary deposits<br>I - Gilbert Fans<br>of these wetlands<br>d provide other critical<br>nosting the largest<br>ory wader birds in<br>ng internationally<br>species providing<br>y habitat for nationally<br>aterbirds (5.1.4) and<br>cial fishery species.<br>on will provide<br>ats for dependent<br>ea level rises<br>unge (6.3.4). Distinct<br>). associated with the<br>season flooding<br>rgest know extents of<br>cland and also creates<br>hities which result in<br>thytes established in |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



| Lower Flinders River<br>floodplain | Inverieigh<br>Macalister<br>Warren Vald<br>Bang Bang<br>Worddola | Flinders           | Y |   | Y | This area was identified as being of Regional significance in the Gulf Plains Biodiversity Planning Assessment (BPA) (gup_l_38):<br>Ib (wildlife refugia): HIGH<br>Ie (high species diversity): HIGH<br>Ii (high density of hollow-bearing habitat trees):<br>HIGH.<br>Concentration of off-stream wetlands on scoured floodplain and extensive water holes associated with lower Flinders River. High fauna diversity particularly of frogs e.g. northern waterfrog <i>Litoria dahlii</i> and birds e.g. radjah shelduck <i>Tadorna radjah</i> (Queensland Museum data Birdlife Australia Atlas data). Recorded presence of threatened green sawfish <i>Pristis zijsron</i> and pictorella mannikin <i>Heteromunia pectoralis</i> and the uncommon freshwater whipray <i>Himantura dalyensis</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.3.1                                              | 3                               | fl_nr_ec_20                |
|------------------------------------|------------------------------------------------------------------|--------------------|---|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------|----------------------------|
| Perennial off river<br>waterholes  | Macalister<br>Warren Valot<br>Bang Bang<br>Wonddola              | Flinders<br>Norman | Y | Y | Y | Within the seasonally dry climate of the eastern<br>Gulf perennial waterholes are a limited asset<br>and have high values as aquatic refugia (6.3.1)<br>particularly considering the spectre of increasing<br>rainfall variability due to climate change (6.3.4).<br>Perennial off river waterholes have been defined<br>on the basis of Landsat TM satellite that has<br>recorded water within wetland spatial units for<br>greater than 70% of observations. Given<br>limitations affecting satellite observation capacity<br>wetlands in this observational class are likely to<br>have water within them more frequently than<br>their classification indicates. Perennial off river<br>waterholes owe their existence to a combination<br>of special geomorphic features (6.1.1) and<br>hydrological regimes (6.4.1). These include<br>greater waterhole depth associated with prior<br>channels and/or flood scouring and groundwater<br>supplementation. Groundwater can be supplied<br>from shallow alluvial aquifers associated with<br>interbedded sands in quaternary alluvium or<br>from deeper or adjoining fractured rock aquifers.<br>Water clarity regimes within perennial<br>waterholes are a key driver of their ecology and<br>can also be an indicator of their condition. While | 5.2.1<br>6.1.1<br>6.2.1<br>6.3.3<br>6.3.4<br>6.4.1 | 4<br>3<br>4<br>4<br>3<br>4<br>4 | fl_nr_ec_21<br>nn_nr_ec_17 |

|                                        | Karunba<br>Normanion                           |                                                      |   |   | clear waterholes are often associated with high<br>values e.g. instream productivity aquatic plant<br>and fish diversity some level of water turbidity is<br>commonly a natural water quality feature of<br>Flinders and Norman basin waterholes. In<br>absence of water quality data coverage for the<br>Flinders and Norman basins no distinction in<br>perennial off river waterhole values have been<br>made on the basis of water clarity within these<br>catchments. Regardless of water clarity priority<br>aquatic ecosystems (5.2.1) are commonly<br>associated with perennial waterholes including<br>RE 2.3.16 lagoons on Quaternary alluvial plain.<br>This regional ecosystem is recognised as<br>important breeding and feeding sites (6.3.1) for<br>waterbirds and have an 'of concern' biodiversity<br>status (Sattler & Williams 1999). The ecological<br>significance of perennial waterholes within both<br>the Flinders and Norman Basins has been<br>recognised in a number of documented studies<br>(6.3.3) for the eastern Gulf basins ((Burrows &<br>Perna 2006; Kennard et al. 2011; Hermoso et al.<br>2011; Hogan & Vallance 2012; Jaensch &<br>Richardson 2013; Petheram et al. 2013a, b). |                                           |                            |                                                                         |
|----------------------------------------|------------------------------------------------|------------------------------------------------------|---|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------|-------------------------------------------------------------------------|
| Near perennial off<br>river waterholes | Cintury<br>Concurry<br>Julia Creek<br>Richmond | Flinders<br>Gilbert<br>Mitchell<br>Norman<br>Staaten | Y | Y | Within the highly variable seasonally dry climate<br>of the eastern Gulf waterhole perenniality can<br>vary between years. Near perennial waterholes<br>have been defined on the basis of Landsat TM<br>satellite that has recorded water within wetland<br>spatial units for between 50 to 70% of<br>observations. Given limitations affecting satellite<br>observation capacity wetlands in this<br>observational class are likely to have water<br>within them more frequently than their<br>classification indicates. Near perennial off river<br>waterholes are more extensive than perennial<br>waterholes and share many of their values for<br>much of the year particularly during periods of<br>full inundation in the wet season. In wetter years<br>they may also function as perennial wetlands<br>including in providing refugia for aquatic<br>organisms (6.3.1). Near perennial off river<br>waterholes usually possess a combination of<br>special geomorphic features (6.1.1) and<br>hydrological regimes (6.4.1) that promote the                                                                                                                                                                  | 5.2.1<br>6.1.1<br>6.2.1<br>6.3.1<br>6.4.1 | 3<br>3<br>3<br>3<br>3<br>3 | fl_nr_ec_22<br>gi_nr_ec_24<br>ml_nr_ec_23<br>nn_nr_ec_18<br>sn_nr_ec_12 |

| Karomba       Mormanton         Suprise       Cooractorn         Suprise       Cooractorn         Kowanyama       Kowanyama | retention of water into the dry season including<br>greater waterhole depth clay or bedrock<br>underpans and potentially some level of<br>seasonal groundwater supplementation. Water<br>clarity regimes within near perennial waterholes<br>can be highly variable and cover all spectrums<br>within eastern Gulf basins. Priority aquatic<br>ecosystems (5.2.1) are commonly associated<br>with near perennial waterholes including RE<br>2.3.16 lagoons on Quaternary alluvial plain. This<br>regional ecosystem is recognised as important<br>breeding and feeding sites (6.3.1) for waterbirds<br>and have an 'of concern' biodiversity status<br>(Sattler & Williams 1999). Seasonality<br>associated with non-perennial waterholes can<br>drive boom and bust productivity cycles and<br>habitat resetting that make them productive<br>nursery areas for fisheries and nesting and<br>feeding areas for waterbirds including migratory<br>waders (Blackman et al. 1999). The ecological<br>significance of near perennial waterholes has<br>been recognised in National Directory of<br>Important Wetland listings for certain wetlands<br>and in documented studies (6.3.3) for the<br>eastern Gulf basins (Blackman et al. 1999;<br>Kennard et al. 2011; Jaensch & Richardson<br>2013; Petheram et al. 2013a, b). |  |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

|                       |  |  |  | - |
|-----------------------|--|--|--|---|
| Kirrumba<br>Normanten |  |  |  |   |
|                       |  |  |  |   |
|  | Important Bird Areas<br>(IBA) - Migratory<br>wader and waterbird<br>roosting, feeding and<br>breeding sites | <image/> | Flinders<br>Gilbert<br>Mitchell<br>Norman<br>Staaten | Y |  |  | Part of the Gulf Plains BPA Important Bird Area<br>(related to GUP BPA decision(s): cyp_fa_05<br>cyp_1_07 and gup_1_03). Large breeding<br>population of sarus crane <i>Grus antigone</i> and<br>brolga <i>G. rubicunda</i> present as well as a<br>diversity of other waterbirds e.g. black-winged<br>stilt <i>Himantopus himantopus</i> and black-necked<br>stork <i>Ephippiorhynchus asiaticus</i> and supports<br>large numbers of migratory waders e.g. black-<br>tailed godwit <i>Limosa limosa</i> , great knot <i>Calidris<br/>tenuirostris</i> , little curlew <i>Numenius minutus</i> ,<br>lesser sand plover <i>Charadrius mongolus</i> and<br>eastern curlew <i>N. madagascariensis</i> (Taplin<br>1991; Dutson et al. 2009). Large waterbird<br>nesting colonies known from Mitchell especially<br>of intermediate egret <i>Ardea intermedia</i> but does<br>include other egrets, herons, cormorants and<br>Australasian darter <i>Anhinga novaehollandiae</i><br>(Garnett 1985; Jaensch & Richardson 2013). | 5.1.4<br>6.3.1 |  | fl_nr_fa_01<br>gi_nr_fa_01<br>ml_nr_fa_01<br>nn_nr_fa_01<br>sn_nr_fa_01 |
|--|-------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------|---|--|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|-------------------------------------------------------------------------|
|--|-------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------|---|--|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|-------------------------------------------------------------------------|



|                                                                            | Kowaniyama         |          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                       |             |
|----------------------------------------------------------------------------|--------------------|----------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------|-------------|
| Shallow seasonal<br>hypersaline lakes on<br>Mesozoic sandstone<br>plateaus | Srapory<br>Springs | Flinders | Y | Regional Ecosystem RE 2.3.38 is a lacustrine<br>wetland described as "shallow seasonal<br>hypersaline lakes with a fringe of Eucalyptus<br>camaldulensis on Mesozoic sandstone plateaus<br>with a combination of grasses and sedges<br>including <i>Eragrostis parviflora</i> , <i>Diplachne fusca</i><br>var. <i>fusca</i> , <i>Pseudoraphis spinescens</i> ,<br><i>Schoenoplectiella lateriflora</i> and <i>Eleocharis</i><br><i>philippinensis</i> . Low sandy deposits on the<br>western margins may occur. Open water is<br>common but seasonal. Occurs in large closed<br>depressions on Mesozoic sandstone plateaus It<br>represents a unique rare geomorphic unit<br>(6.1.1). Named examples in the assessment<br>area include Louisa Lake Pelican Lake Agnes<br>Lake and Gum Swamp Bore. Several of these<br>have been the focus of published studies (6.3.3).<br>This rare ecosystem has a limited extent and an<br>'of concern' biodiversity status (5.2.1). The<br>seasonal inundation and hypersalinity of these<br>lakes is related to their hydrological connections<br>to the host sandstones (6.4.1) and this creates<br>unique habitats (6.3.1) which supports an<br>adapted invertebrate community and also<br>distinctive ecological processes (6.2.1). During<br>periods of inundations they provide habitat and<br>feeding resources for a range of waterbirds. | 5.2.1<br>6.1.1<br>6.2.1<br>6.3.1<br>6.3.3<br>6.4.1 | 3<br>4<br>4<br>4<br>4 | fl_nr_fl_04 |

|  | Black tea tree<br>swamps with vine<br>thicket elements<br>especially on basalt | Springs       Bornderoe       Bornderoe | Finders<br>Gilbert<br>Mitchell |  | Y |  | Regional ecosystem 9.3.10a is a palustrine<br>wetland comprised of black tea tree <i>Melaleuca</i><br><i>bracteata</i> low woodland to low open forest<br>swamps +/- <i>Casuarina cunninghamiana</i> +/-<br><i>Eucalyptus leptophleba</i> +/- <i>Eucalyptus spp.</i> +/-<br><i>Corymbia spp.</i> emergents or vine scrub species<br>on basalt plains wetted by spring discharges<br>(6.1.1). The shrub layer varies from absent to a<br>continuum with <i>M. bracteata</i> and dry rainforest<br>species where these are present. This<br>community is floristically rich and very variable in<br>structure and can also occur as small clumps of<br>trees in association with the grassland RE 9.3.27<br>or as a dense sub-canopy layer of <i>M. bracteata</i><br>under a dominant canopy of <i>Casuarina</i><br><i>cunninghamiana</i> . Occurs on or fringing swamps<br>and springs on basalt and occasionally along<br>creek lines on basalt geologies. This community<br>occurs in seasonally arid landscapes and the<br>springs associated with it retain moisture well<br>into the dry season and support significant food<br>and habitat resources and provide refugia for<br>local fauna and may support endemic flora<br>(6.3.1). | 6.1.1<br>6.3.1 | 33 | fI_nr_fI_05<br>gi_nr_fI_04<br>mI_nr_fI_03 |
|--|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|---|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----|-------------------------------------------|
|--|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|---|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----|-------------------------------------------|

|                       | Bound                  |         |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |       |             |
|-----------------------|------------------------|---------|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|-------------|
| Gilbert marine plains | Miseroni<br>Lotus Vale | Gilbert | Y | Y | The Gilbert catchment contains extensive<br>freshwater marine plain areas on clay pans. This<br>area is the start of the big well-developed flat<br>marine plains in the region containing good<br>freshwater bird sites. Significant values include<br>being a productive recreational fishing area and<br>providing habitat for crocodiles <i>Crocodylus</i> spp.<br>and large barramundi <i>Lates calcarifer</i> . Bird<br>habitat values include habitat for birds of prey<br>which nest on dunes. The area includes a lower<br>surface more frequently inundated by tidal<br>waters and an upper surface less frequently<br>inundated but with extensive freshwater<br>wetlands. This area is threatened by total<br>grazing pressure rubber vine encroachment and<br>neem tree encroachment. | 5.1.4<br>6.2.1<br>6.4.1 | 4 4 4 | gi_nr_ec_01 |

| Gilbert-Smithburne<br>delta fan       | Macaroni<br>Macaroni<br>Status<br>Vale<br>String                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gilbert | Y |   | The Gilbert-Smithburne delta fan is full of<br>waterbird colonies and is a particular stronghold<br>for the sarus crane <i>Grus antigone</i> .                                                                                                | 5.1.4                   | 4     | gi_nr_ec_02 |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|-------------|
| Einasleigh River<br>spring fed system | Bullieringe<br>Lyndbrook     Mount Garner       Eden Vale     Dagworth<br>Cobana     Mount<br>Surpriss       Mount Turner<br>Georgetown     Mount<br>Surpriss     S. Romans<br>Surpriss       Mount Turner<br>Georgetown     Mount<br>Surpriss     S. Romans<br>Surpriss       Oreen Hills     Einasleigh     Mount<br>Soring Creek       Forsayth     Einasleigh     Soring Creek       North Head<br>Robinhood     Kitaton     Vallay Off<br>Synd Junetion       Fog Creek     Cilberton     Greenvalle       Bellfield<br>Gregory Range<br>Strathpark     Emu Swamp<br>Baskbrass     Pandanus<br>Greey       Stathpark     Sopspar     Gregory<br>Springs     Vanclo Vale | Gilbert | Y | Y | This part of the Einasleigh River is a ground<br>water dependent system from the Einasleigh<br>headwaters to the gorge. It provides perennial<br>flow wildlife refugia and habitat for freshwater<br>crocodiles <i>Crocodylus johnstoni</i> . | 6.3.1<br>6.3.4<br>7.2.1 | 4 4 4 | gi_nr_ec_03 |

| Wetlands fed by<br>Great Artesian Basin<br>springs (Fensham et<br>al. 2006 - Class 3 &<br>4) |  | Flinders<br>Gilbert<br>Mitchell<br>Norman<br>Staaten |  |  | Y | Springs of the Great Artesian Basin feed<br>permanent wetlands that provide oases for<br>unique aquatic life forms in otherwise dry<br>landscapes. For example, an abundance of<br>specialised invertebrates including ostracods,<br>snails, spiders, flatworms and dragonflies are<br>known to occur only in wetlands associated with<br>GAB springs. Likewise, certain grass, herb and<br>sedge species are often restricted to wetlands<br>associated with GAB springs (Fensham 2006).<br>Note: This decision applies to all catchments<br>assessed as part of the EGoC ACA v1.1. In arid<br>environments, a spring with a permanent<br>saturation regime and fixed spatial location may<br>only support surface expression groundwater<br>dependent ecosystems extending less than one<br>hectare from the spring vent. For this reasons a<br>standard distance of 100m was used to identify<br>the location and extent of wetlands dependent<br>upon spring flows. In reality this distance will<br>vary depending on local hydrological<br>characteristics, spring flow rates and extent.<br>There were no intersecting non-riverine spatial<br>units in the Flinders and Staaten catchments. | 6.3.1<br>6.3.4<br>7.2.1 | 3 3 3 | gi_nr_ec_05<br>ml_nr_ec_18<br>nn_nr_ec_07 |
|----------------------------------------------------------------------------------------------|--|------------------------------------------------------|--|--|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|-------------------------------------------|
|----------------------------------------------------------------------------------------------|--|------------------------------------------------------|--|--|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|-------------------------------------------|

|                   | Templeton                                                                                                                                                                   |                     |   |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |       |                            |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|----------------------------|
| Wetland complexes | Cabana     St Romans       Nourt     Round Mountain       Surgerse     Damper Hill       Plains     Plains       Ennisleigh     Spring Greast       Robinitiood     Kidston | Gilbert<br>Mitchell | Y | Y | Y | Selected wetland complexes identified as being<br>of State significance in the Einasleigh Uplands<br>BPA (eiu_I_09):<br>Ib (wildlife refugia): VERY HIGH<br>Id (taxa at the limits of their ranges): HIGH<br>Ie (high species richness): VERY HIGH<br>Ig (REs with distinct variation): HIGH<br>Ii (high density of hollow-bearing trees): VERY<br>HIGH<br>Ij (significant breeding or roosting sites): HIGH<br>Values listed in the BPA include: One of the<br>primary concerns for biodiversity assessment<br>and planning in undeveloped regions is that<br>biodiversity conservation and management be<br>pursued at a landscape scale. This is particularly<br>so for wetlands. In undeveloped landscapes the<br>aim is to retain wetlands within their landscape<br>context not to restrict the focus to the wetland<br>body itself. In these landscapes there is the<br>opportunity to ensure that landscape elements<br>that directly relate to wetlands and contribute to<br>their values are identified in association with the<br>wetland itself; 12 wetland complexes in the EIU<br>are so significant that they particularly need to<br>be addressed at the landscape scale.<br>Additional values provided by the Southern Gulf<br>of Carpentaria wetland ecology expert panel<br>include: These wetlands have a much localised | 6.1.1<br>6.3.1<br>6.3.3 | 4 4 4 | gi_nr_ec_09<br>ml_nr_ec_19 |

|                                               | Round                                                                                        |                     |   |   |   | feed, mostly from southeast although they are<br>modified by drainage. The area has basalt to the<br>south/west and granite/rhyolite to the north east<br>as well as tertiary residuals. The main floodplain<br>complex is upstream of the Einasleigh township.<br>Some of the largest freshwater crocodiles<br><i>Crocodylus johnstoni</i> are known from this area.<br>The area is related to the Blackbraes lava flow<br>and contains combined basalt systems a mosaic<br>of springs and waterholes. These systems are<br>unique in a state wide context. The most<br>southern decision is remnant of old tertiary<br>surface with two wetlands in depressions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |     |                            |
|-----------------------------------------------|----------------------------------------------------------------------------------------------|---------------------|---|---|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|----------------------------|
| Basalt swamps<br>McBryde volcanic<br>province | Cabans<br>Supprise<br>Bamper<br>Bans<br>Bans<br>Bans<br>Bans<br>Bans<br>Bans<br>Bans<br>Bans | Gilbert<br>Mitchell | Y | Y | Y | This area was identified as being of Regional significance in the Einasleigh Uplands BPA (eiu_l_27):<br>Ia (centre of endemism): HIGH<br>Ib (wildlife refugia): VERY HIGH<br>Ic (disjunct populations): HIGH<br>Id (taxa at the limits of their ranges): HIGH<br>Ie (high species richness): VERY HIGH<br>Values listed in the BPA include: The basalt<br>wetlands associated with the outer margins of<br>the volcanic McBride Province are the most<br>extensive in the state. The relatively high altitude<br>the extent of the basalt surface (which acts as<br>both catchment and recharge area) the broad<br>dome shape that characterizes it and the<br>periodically high monsoonal rainfalls all<br>contribute to their formation and maintenance.<br>The wetlands include permanent and seasonal<br>wetlands including RE 9.3.4 (only those<br>occurrences on basalt derived alluvials) RE<br>9.3.10 ( <i>Melaleuca bracteata</i> creeks and<br>swamps) RE 9.3.11 (wetlands on basalts) RE<br>9.3.25 (basalt grasslands) RE 9.3.27a (basalt<br>grassland with <i>M. bracteata</i> ) RE 9.8.10 (forest<br>red gum on fresh vesicular basalt) RE 9.8.13<br>(basalt grasslands). The wetlands allow the<br>survival of a great diversity of species in an<br>otherwise inhospitable landscape including | 6.3.1<br>6.3.3 | 4 4 | gi_nr_ec_10<br>ml_nr_ec_20 |

|                                                                         | Lyndbrook<br>St Ronans<br>Mountain<br>Damper Hill |         |   |   | species at the limits of their ranges disjunct<br>populations and threatened species. Threatened<br>flora includes <i>Paspalidium udum, Aponogeton</i><br><i>queenslandicus, Solanum multiglochidiatum,</i><br><i>Lysiana filifolia and Rhamphicarpa australiensis</i><br>while threatened fauna include the limbless fine-<br>lined slider <i>Lerista ameles</i> .<br>Additional values provided by the Southern Gulf<br>of Carpentaria wetland ecology expert panel<br>include: this river is permanently spring fed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |             |             |
|-------------------------------------------------------------------------|---------------------------------------------------|---------|---|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------|-------------|
| Large wrtlands at<br>confluence of<br>Einasleigh and<br>Ethridge rivers | Harry Lagoon                                      | Gilbert | Y | Y | The primary value associated with these two<br>wetlands is that they represent the largest and<br>best examples of two palustrine wetland<br>associated regional ecosystems (8.2.5). The<br>large size of these swamps is a distinct<br>geomorphic feature (6.1.1) associated with their<br>location at the confluence of two larger river<br>systems. These are REs: 2.3.61a: <i>Eucalyptus</i><br><i>microtheca</i> woodland in seasonal swamps on<br>active Quaternary alluvial plains and RE 2.3.34d:<br><i>Eucalyptus camaldulensis</i> woodland and sedges<br>in circular swamp depressions on podsolic soils.<br>Both are seasonal swamp communities that<br>have a ground layer of emergent macropytes<br>that form important food sources and nesting<br>habitats for waterbirds including spike rush<br><i>Eleocharis spp.</i> spiney mud grass <i>Pseudoraphis</i><br><i>spinescens,</i> nardoo <i>Marsilea</i> spp. and<br>occasionally native rice <i>Oryza australiensis.</i><br>Given the size and productivity of these<br>wetlands and their proximity to adjoining near<br>perennial wetlands they can seasonally host<br>relatively large water bird populations and<br>provide seasonally important feeding and<br>moulting sites for water birds (6.3.1). The size of<br>the spikerush swamps also limits the capacity of<br>local feral pig populations to create extensive<br>disturbance (C. Appleton pers. comm.). | 6.1.1<br>6.3.1<br>8.2.5 | 3<br>3<br>4 | gi_nr_ec_13 |

| Blackbraes NP<br>artificial wetland | Env Swimp        | Gilbert             | Y | Y | This region was identified as being of Regional<br>significance in the Einasleigh Uplands<br>Biodiversity Planning Assessment (BPA)<br>(eiu_fa_11):<br>Ib (wildlife refugia): HIGH<br>Ie (high species richness): HIGH<br>Ih (artificial waterbody or manipulated wetland of<br>ecological significance): HIGH<br>Ij (significant breeding or roosting sites): VERY<br>HIGH.<br>Large artificial wetland in Blackbraes Resources<br>Reserve. Supports a wide variety of wetland<br>birds including more than 1% of the total<br>population of the cotton pygmy <i>goose Nettapus</i><br><i>coromandelianus</i> and breeding site for<br>cormorants and the white bellied sea eagle<br><i>Haliaeetus leucogaster</i> . Area includes 500m<br>buffer from edge of wetland.                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.3.1<br>6.3.3<br>6.3.4                   | 4 4 4     | gi_nr_ec_17                |
|-------------------------------------|------------------|---------------------|---|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------|----------------------------|
| Fossil Brook and<br>Lynd area       | S<br>Remain<br>S | Gilbert<br>Mitchell | Y | Y | This area was identified as being of State<br>significance in the Einasleigh Uplands<br>Biodiversity Planning Assessment (BPA)<br>(eiu_I_31):<br>Ib (wildlife refugia): VERY HIGH<br>Ie (high species richness): VERY HIGH.<br>This area covers the wetlands springfields and<br>spring-fed ecosystems associated with the upper<br>Lynd River and Fossil Brook. The wetlands are<br>fed by northern flows of Undara Basalt and flow<br>in the main river channels is permanent. The<br>area includes key sooty grunter <i>Hephaestus</i><br><i>fuliginosus</i> habitat including spawning habitat in<br>the rapids, outstanding freshwater crocodile<br><i>Crocodylus johnstoni</i> habitat and very high fish<br>diversity. The area includes an internationally<br>significant reference site for crocodilians. The<br>area also has a very high diversity of macropod<br>species and includes the only known habitat for<br>the skink <i>Proablepharus barrylyoni</i> . Enclosed<br>pockets of basalts and granites are included to<br>consolidate the area increase connectivity and<br>diversity of ecosystem and species and to<br>increase the integrity and viability of the area. A | 6.3.1<br>6.3.3<br>6.3.4<br>6.4.1<br>8.2.5 | 4 4 4 4 4 | gi_nr_ec_19<br>ml_nr_ec_16 |

|                                                                        | Bulleringe<br>Eyndbrook<br>Gabans<br>Mount Round |         |   |   |   | buffer of 500m was also used to ensure values<br>associated with the ecotone between the<br>wetlands and adjacent habitat were included and<br>to further increase habitat representation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |       |             |
|------------------------------------------------------------------------|--------------------------------------------------|---------|---|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|-------------|
| Wetlands at the<br>confluence of<br>Etheridge and<br>Einasleigh rivers | Einasleigh<br>River<br>Harry Lagoon              | Gilbert | Y | Y | Y | This area was identified as being of Regional significance in the Gulf Plains Biodiversity Planning Assessment (BPA) (gup_l_11):<br>Id (species at geographic range limit): HIGH le (high species diversity): VERY HIGH Ig (REs show distinct variation in species composition): VERY HIGH.<br>Diverse surface. A few very unusual and very large wetland areas with diverse veg/land types/RE's. Very large and best example of coolabah woodland swamp. Clay soils including black soil section which is rare in this part of the Gulf. Exposed duricrust north of the Einasleigh River. Most southern extent of flying fox scrub type ecosystem. Western limit of <i>Macropteranthes montana</i> which is vulnerable. Diverse fauna recorded in area including a range of waterbirds, <i>Ctenotus zebrilla</i> and northeastern range limit of long-haired rat <i>Rattus villosissimus</i> . | 6.2.1<br>6.3.1<br>6.3.3 | 4 4 4 | gi_nr_ec_20 |

| Clear perennial off<br>river waterholes | <image/> | Gilbert<br>Mitchell<br>Staaten | Y | Y | Y | Within the seasonally dry climate of the eastern<br>Gulf perennial waterholes are a limited asset<br>and have high values as aquatic refugia (6.3.1)<br>particularly considering the spectre of increasing<br>rainfall variability due to climate change (6.3.4).<br>A subset of these are clear perennial off river<br>waterholes which are an even more limited<br>wetland asset that owe their existence to a<br>combination of special geomorphic features<br>(6.1.1) and hydrological regimes (6.4.1) These<br>include greater waterhole depth associated with<br>prior channels and/or flood scouring and<br>groundwater supplementation. Groundwater is<br>often supplied from shallow alluvial aquifers<br>associated with interbedded sands in quaternary<br>alluvium. Such aquifers are recharged by a<br>combination of rainfall overbank flood flows and<br>connectivity to within channel flows in adjoining<br>river channels as occurs in mil reaches of the<br>Mitchell River or via supplementation from<br>fractured rock aquifers as occurs in some upper<br>Gilbert Basin waterholes (Batlle-Aguilar et al.<br>2014; CSIRO 2009; Petheram et al. 2013a).<br>Direct supplementation of waterholes from<br>fractured rock and deeper groundwater aquifers<br>also occurs in upper catchment areas of the<br>Mitchell Staaten and Gilbert basins (CSIRO<br>2009; Petheram et al. 2013a). The maintenance<br>of water clarity within these waterholes has been<br>assessed by reference to multiple years of<br>satellite TM imagery and can sometimes also be<br>an indication of less disturbance by land use and<br>other pressures including cattle access soil<br>erosion and pig wallowing (Lymburner &<br>Burrows 2008). TM imagery is not capable of<br>detecting smaller sized or heavily vegetated<br>waterholes which may not be included in this<br>value decision. Such smaller perennial wetlands<br>will share equivalent values to larger sites<br>particularly where they occur in aggregations.<br>The combination of water clarity and perenniality<br>within such waterholes supports the<br>development of rich aquatic macrophyte habitats<br>and high instream productivity and underpins<br>their role as refuges (6.3.1) | 5.2.1<br>6.1.1<br>6.2.1<br>6.3.3<br>6.3.4<br>6.4.1 |  | gi_nr_ec_21<br>ml_nr_ec_21<br>sn_nr_ec_10 |
|-----------------------------------------|----------|--------------------------------|---|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|-------------------------------------------|
|-----------------------------------------|----------|--------------------------------|---|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|-------------------------------------------|

|                                                                |                                   |                                |   |   | which has only been recorded in Australia from<br>two off river lagoons (10 Mile and 12 Mile<br>Lagoon) in the mid Mitchell Basin. Many clear<br>perennial off river waterholes are mapped as RE<br>2.3.16 lagoons on Quaternary alluvial plains<br>which are recognised as important breeding and<br>feeding sites (6.3.1) for waterbirds and have an<br>'of concern' biodiversity status. They also<br>commonly host 'of concern' RE 3.3.66<br>permanent lakes and lagoons frequently with<br>fringing woodlands or sedgelands (5.2.1) (Sattler<br>& Williams 1999). The exceptional value of clear<br>perennial waterholes including these specific<br>lagoons has been recognised in a number<br>(6.3.3) of national and regional assessments<br>(Kennard et al. 2011; Hermoso et al. 2013).<br>They also underpin key refugia and nursery<br>habitat values nominated for several National<br>Directory listed (6.3.2) wetlands including the<br>Mitchell River Fan Smithburne-Gilbert Fan and<br>Dorunda Lakes aggregations (Blackman et al.<br>1999).                                                                                       |                                                             |                            |                                           |
|----------------------------------------------------------------|-----------------------------------|--------------------------------|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------|-------------------------------------------|
| Clear to turbid or<br>turbid perennial off<br>river waterholes | Karumba<br>Normanton<br>Corgetown | Gilbert<br>Mitchell<br>Staaten | Y | Y | Within the seasonally dry climate of the eastern<br>Gulf perennial waterholes are a limited asset<br>and have high values as aquatic refugia (6.3.1)<br>particularly considering the spectre of increasing<br>rainfall variability due to climate change (6.3.4).<br>Perennial off river waterholes owe their<br>existence to a combination of special<br>geomorphic features (6.1.1) and hydrological<br>regimes (6.4.1) These include greater waterhole<br>depth associated with prior channels and/or<br>flood scouring and groundwater<br>supplementation. Groundwater is often supplied<br>from shallow alluvial aquifers associated with<br>interbedded sands in quaternary alluvium. Such<br>aquifers are recharged by a combination of<br>rainfall overbank flood flows and connectivity to<br>within channel flows in adjoining river channels<br>as occurs in mid reaches of the Mitchell River or<br>via supplementation from fractured rock aquifers<br>as occurs in some upper Gilbert Basin<br>waterholes (Batlle-Aguilar et al. 2014; CSIRO<br>2009; Petheram et al. 2013a). Direct<br>supplementation of waterholes from fractured | 5.2.1<br>6.1.1<br>6.2.1<br>6.3.1<br>6.3.3<br>6.3.4<br>6.4.1 | 4<br>3<br>4<br>3<br>4<br>4 | gi_nr_ec_22<br>ml_nr_ec_22<br>sn_nr_ec_11 |



|                 |                                                                                                                                                                              |                                |   |   | (Blackman et al. 1999).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                             |                            |                                           |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------|-------------------------------------------|
| Pleistocene fan | Galbraith       Dorunda         Macaroni       Vanrook         Mirande Downs       Mirande Downs         Maggitzville       Mirande Downs         East Haydon       Bickbull | Gilbert<br>Mitchell<br>Staaten | Y | Y | A nationally outstanding example of an alluvial plain wetland aggregation occurring within the predominantly Pleistocene aged component of the largest fluvial megafan system (6.1.1) in Australia (Blackman et al. 1999). The site includes extensive areas of seasonal and more scattered semi-permanent palustrine and lacustrine wetlands unique to western Cape York Peninsula and the south east Gulf of Carpentaria and those within the Mitchell are considered the best example (8.2.5) component part of the most extensive and densest occurrence of these wetland types in northern Australia (Cook et al. 2011) (6.3.3). Areas on younger Pleistocene surfaces adjoining the Mitchell Delta are included within the nationally listed Mitchell River fan wetland aggregation (6.3.2). In contrast to the younger Holocene fan which forms the active Mitchell delta the Pleistocene fan defines the broader floodplain of the Mitchell and contiguous and hydrologically linked lower Staaten River Basin (6.4.1). It is comprised of elevated floodplain levees and distributary systems with predominantly finer clayey soils. These soils form a hard underpan for the predominantly shallow and seasonal wetlands which lack groundwater inflows and obtain much of their water supply from local floodplain catchment run in. Overland flood flows; inundation and connectivity (6.2.1) are critical for the form and function of the Pleistocene fan aggregation but are occur less frequently and extensively than for the Holocene fan. Overland flow connectivity from the Mitchell to Staaten basins is essential for the maintenance of these wetlands within the lower Staaten basin (T. Vallance pers. comm.). Areas not inundated by flood inundation provide regional flood refugia for terrestrial fauna (6.3.1). Where distributary watercourses cut through the clayey underpan of the floodplain deeper wetlands forming important aquatic refugia occur | 5.1.4<br>6.1.1<br>6.2.1<br>6.3.1<br>6.4.1<br>6.3.1<br>8.2.5 | 4<br>3<br>4<br>3<br>4<br>3 | gi_nr_ec_23<br>ml_nr_ec_09<br>sn_nr_ec_04 |

|                                                    |          |   |   | diverse populations of waterbirds (5.1.4) and<br>other fauna via the provision of critical nesting<br>and breeding roosting feeding and moulting<br>habitats (6.3.1) with the best examples occurring<br>within the Mitchell Basin.                                                                                                                                                                                                                                                                                                   |                                  |             |             |
|----------------------------------------------------|----------|---|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------|-------------|
| Lake Mitchell (also<br>known as South Edge<br>Dam) | Mitchell | Y | Y | Lake Mitchell (also known as South Edge Dam)<br>contains a high diversity of water birds and<br>freshwater fishes unique to Mitchell catchment<br>as well as freshwater crocodiles <i>Crocodylus</i><br><i>johnstoni</i> saltwater crocodiles <i>C. porosus</i> and<br>macrophytes. It is an artificial dam and unique to<br>have such a large water body so high in the<br>Mitchell catchment. Connected to adjacent<br>wetlands. Grouped with surrounding non-riverine<br>wetlands upstream. Possibly contains migratory<br>waders. | 5.1.4<br>6.3.1<br>6.3.4<br>6.4.1 | 3<br>4<br>3 | ml_nr_ec_01 |

| Bulimba station  | Ruenswath | Mitchell |   | Y | Y | This aggregation of swamps is considered the best example (8.2.5) of RE 2.5.55 a palustrine /seasonal swamp wetland <i>Melaleuca clarksonii</i> low woodland in closed depressions on Tertiary to Quaternary deposits. The ground layer is a combination of tussock grasses sedges and forbs including <i>Pseudoraphis spinescens</i> , <i>Nymphoides indica and Eleocharis</i> spp. They also includes small unwooded areas and open water. The swamps are relatively large and are formed in blocked tributary depressions and back plains (6.1.1) of Sugarbag Creek. The expression of the RE at this site is unique in that it only includes pure stands of <i>Melaleuca clarksonii</i> with no co-occurring <i>M. viridiflora</i> typically associated with the RE. There is also an undescribed Fabaceous vine species in the area. The wetlands have a hard mud stone underpan formed on alluvials and are surrounded by lateritic hills and hard catchments that run off easily. The wetlands fill easily and consequently inundate early in the wet season and retain water into the dry season providing contemporary and future climate change (6.3.4) refugial (6.3.1) values and important feeding and moulting sites for waterbirds. | 6.1.1<br>6.3.1<br>6.3.4<br>8.2.5 | 3<br>3<br>4      | ml_nr_ec_02 |
|------------------|-----------|----------|---|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|-------------|
| Mareeba wetlands |           | Mitchell | Y |   | Y | This area was identified as being of Regional<br>significance in the Einasleigh Uplands<br>Biodiversity Planning Assessment (BPA)<br>(eiu_fa_12):<br>Ib (wildlife refugia): HIGH<br>Ih (artificial waterbody or manipulated wetland of<br>ecological significance): HIGH<br>Ij (significant breeding or roosting sites): HIGH<br>Complex of artificial wetlands watercourses and<br>woodlands on sand sheets and low metamorphic<br>hills. Fed largely by irrigation runoff. Support a<br>wide range of fauna including brolgas <i>Grus</i><br><i>rubicunda</i> , sarus crane <i>G. antigone</i> , freckled<br>duck <i>Stictonetta naevosa</i> , northern tree creeper<br><i>Climacteris picumnus melanotus</i> , buff-breasted<br>button-quail <i>Turnix olivii</i> , northern quoll<br><i>Dasyurus hallucatus</i> and Mareeba rock wallaby                                                                                                                                                                                                                                                                                                                                                                                                       | 6.3.1<br>6.3.3<br>6.3.4<br>6.4.1 | 3<br>3<br>3<br>3 | ml_nr_ec_03 |

|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |  |   | Petrogale mareeba. Additional values provided<br>by the Eastern Gulf of Carpentaria wetland<br>fauna and ecology expert panel include: A<br>permanent to near permanent water source for<br>important fauna species; provides refugia during<br>dry season; is an important water source for<br>Gouldian finch <i>Erythrura gouldiae</i> which needs<br>to drink several times per day. The Mareeba<br>Wetlands are a group of artificial lacustrine<br>wetlands in a natural setting that receive<br>tailwater discharge and overflow from the<br>Dimbulah irrigation area. This artificially<br>enhanced perenniality represents a distinct<br>hydrological regime (6.4.1) within the relatively<br>hydrologically unmodified planning area. The<br>permanence of these relatively shallow lakes<br>has created aquatic refugia (6.3.1) within a<br>seasonally dry landscape that is likely to<br>increase in value under the spectre of increased<br>rainfall variability under climate change (6.3.4).<br>They have also supported the development of a<br>rich aquatic macrophyte community the<br>productivity of which supports a good stable<br>population of birds including listed woodland<br>species e.g. Gouldian finches. Birdlife<br>associated with these wetlands has attracted<br>scientific study and documentation (6.3.3) and<br>the site has become a regional tourism<br>attraction. |                |     |             |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|-------------|
| Mt Mulligan plateau<br>wetlands | interest of the second s | Mitchell |  | Y | These wetlands include a small number (e.g. 3) of palustrine and open water bodies the largest of which is approximately 350m long situated at an altitude of approximately 700m atop the Mt Mulligan. The site is data deficient. Springs are known for the site and it is assumed that the wetland which may be semi perennial receives some groundwater supplementation. Mt Mulligan is representative of an ancient Triassic sandstone surface and this plateau is the only remnant of its type remaining. The occurrence of this wetland at this altitude an on this sandstone surface is a distinct geomorphic feature (6.1.1) and the hydrological regime associated with a spring fed high altitude wetland is also distinctive (6.4.1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.1.1<br>6.4.1 | 4 4 | ml_nr_ec_04 |

| Fisherman Waterhole<br>springs                       | Walsh River               | Mitchell | Y | Y | Y | Hot springs near Fisherman Waterhole. Thermal<br>Soda springs and nearby non-riverine wetlands.<br>Contributing to hydrological regime of the<br>wetlands. Number of significant fauna species<br>specialised soda biota. This small wetland<br>aggregation is comprised of several active hot<br>springs and associated palustrine wetlands<br>located just above the active river channel<br>immediately adjacent and to the east of<br>Fisherman Waterhole on the Walsh River. The<br>geomorphic and associated geologic setting for<br>these thermal springs is unique (6.1.1) as is the<br>hydrological regime (6.4.1) of the associated<br>palustrine wetlands. Their soda geochemistry<br>creates unique water quality characteristics<br>which is also reflected in a specialised soda<br>biota (6.2.1). (S. Choy pers. comm.). Include<br>nearby non-riverine wetlands. The perennial<br>palustrine wetlands contain a well-developed<br>emergent macrophyte community and provide<br>an aquatic refugia (6.3.1) and habitat resources<br>for dependent fauna.                       | 6.1.1<br>6.2.1<br>6.3.1<br>6.4.1 | 4 4 4 4     | ml_nr_ec_05 |
|------------------------------------------------------|---------------------------|----------|---|---|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------|-------------|
| Wetland aggregation<br>on upper Crosby<br>floodplain | Poriith<br>B<br>Horseshee | Mitchell | Y | Y | Y | This floodplain wetland aggregation is part of an alluvial valley which hosts the most upstream permanent waterholes in the Crosbie Creek subcatchment of the Alice River. The primary significance of the area is associated with the size and permanence of the riverine and non-riverine wetlands within a highly seasonal sub basin with Horseshoe Lagoon the best example (Jeff Shellberg pers. comm.). The area's values have been identified by a number of recent field investigations (6.3.3) (Shellberg 2014; Shellberg et al. 2014, 2015). It includes a rich array of meandering and anabranching channels off-channel lagoons (billabongs and oxbows) elliptical or elongate swamps tributary creeks and other interconnected complex habitat within inter-bedded alluvial sediments. They are frequently inundated by floodwater each wet season. There is a high diversity of aquatic plants around floodplain wetlands and the areas supports a number of 'Of Concern' wetland associated Regional Ecosystems (5.2.1) including RE 3.3.45: <i>Eucalyptus chlorophylla</i> +/- | 5.2.1<br>6.3.1<br>6.3.3<br>6.3.4 | 4<br>4<br>3 | ml_nr_ec_06 |

|                                                                  |            |          |   |   |   | Melaleuca viridiflora low open woodland on<br>Mitchell River floodplain and RE 3.3.66a:<br>Permanent wetlands vegetated with <i>Eleocharis</i><br><i>spp. Nymphaea</i> spp. and <i>Nymphoides</i> spp. +/-<br>fringing open-forests of <i>Melaleuca</i> spp.<br>Lacustrine wetlands are commonly fringed by an<br>open sedge-land dominated by <i>Lepironia</i><br><i>articulata.</i> Perennial aquatic refugia (6.3.1)<br>(6.3.4) are comprised of off channel lagoons and<br>channel hosted pools and support a high<br>species richness of fish including species at their<br>extralimital range, e.g. delicate blue-eye<br><i>Pseudomugil tenellus</i> and threadfin rainbowfish<br><i>Iriatherina werneri</i> the latter expressing unique<br>phenotypes (Shellberg 2014; Shellberg et al.<br>2014, 2015). Sixteen species of fish and three<br>crustacean species have been identified<br>including tiger crab <i>Austrothelphusa tigrina</i><br>which represents a range extension for this<br>endemic species. Wildlife fauna associated with<br>the Crosbie floodplains is also diverse and<br>includes eighty-one species of birds five<br>mammal species six reptile species and seven<br>amphibian species. The importance of the<br>wetlands as a focal point for bird fauna and<br>amphibians has also been noted. |                                  |             |             |
|------------------------------------------------------------------|------------|----------|---|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------|-------------|
| Wetland aggregation<br>on Eight Mile Creek,<br>Crosby floodplain | Boraishiot | Mitchell | Y | Y | Y | This floodplain wetland aggregation occurs on<br>the floodplain of Eight Mile Creek immediately<br>upstream of the confluence of Crosbie Creek<br>both of which are subcatchment of Alice River.<br>The aggregation occurs on an alluvial floodplain<br>and abuts adjoining sand sheets derived from a<br>weathered Holroyd Plain surface into which<br>connected wetland depressions extend. The<br>primary significance of the area is associated<br>with the size and permanence of the riverine and<br>non-riverine wetlands within a highly seasonal<br>sub basin (Jeff Shellberg pers. comm.). The<br>wetlands include meandering and anabranching<br>riverine channels off-channel lagoons<br>(billabongs and oxbows) elliptical or elongate<br>swamps tributary creeks large seasonal lakes<br>within sandy depressions and other<br>interconnected complex habitat within inter-<br>bedded alluvial sediments. Most are inundated                                                                                                                                                                                                                                                                                                                                                                                       | 5.2.1<br>6.3.1<br>6.3.3<br>6.3.4 | 4<br>3<br>3 | ml_nr_ec_07 |

|              |                                             |                     |   |   |   | by floodwater each wet season and elevated<br>flood flows also contribute to the recharge of<br>sand sheet aquifers (6.4.1) supplying large<br>seasonal swamps in connected sandy<br>depressions. There is a high diversity of aquatic<br>plants around floodplain wetlands and the areas<br>supports a number of 'Of Concern' wetland<br>associated Regional Ecosystems (5.2.1)<br>including RE 3.3.41: <i>Melaleuca clarksonii</i> low<br>open forest in swamps and RE 3.3.66a:<br>Permanent wetlands vegetated with <i>Eleocharis</i><br>spp., <i>Nymphaea</i> spp. and <i>Nymphoides</i> spp. +/-<br>fringing open-forests of <i>Melaleuca</i> spp.<br>Lacustrine wetlands are commonly fringed by an<br>open sedge-land dominated by <i>Lepironia</i><br><i>articulata</i> . Perennial aquatic refugia (6.3.1)<br>(6.3.4) are comprised of off channel lagoons and<br>channel hosted pools and support a high<br>species richness of fish. The importance of the<br>wetlands as a focal point for bird fauna and<br>amphibians has also been noted.                                                                                                                                                        |                                                             |                                 |                            |
|--------------|---------------------------------------------|---------------------|---|---|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------|----------------------------|
| Holocene fan | Kowanyama<br>Prove<br>Pane<br>Pane<br>Dumar | Mitchell<br>Staaten | Y | Y | Y | This area is identified as being of State<br>significance in the Gulf Plains Biodiversity<br>Planning Assessment (6.3.3) (BPA decision<br>gup_I_05) and is included within the nationally<br>listed Mitchell River fan Aggregation (6.3.2). It<br>provides an outstanding example of a diverse<br>and rich array of alluvial plain wetlands and deep<br>water habitats which characterise the northern<br>portions of the Mitchell-Gilbert Fan province of<br>the Gulf Plains bioregion (8.2.5). The Holocene<br>fan represents the youngest most active<br>component of the largest fluvial megafan system<br>in Australia (Blackman et al. 1999) and includes<br>the active delta of the Mitchell River the largest<br>landform feature of this type in the state (6.1.1).<br>The sites also includes a high diversity of other<br>alluvial landform elements including; closed<br>depressions (lakes oxbows swamps) and open<br>depressions (drainage depression stream<br>channel stream bed swamp) within a flat upland<br>comprising plains fans back plains and<br>floodouts. Flood inundation and flows are<br>integral to site values associated with its<br>dynamic geomorphological hydrological and | 5.1.4<br>6.1.1<br>6.2.1<br>6.3.1<br>6.3.3<br>6.3.4<br>6.4.1 | 4<br>4<br>3<br>4<br>4<br>4<br>4 | ml_nr_ec_10<br>sn_nr_ec_05 |



| Pliocene fan | Image: Bit in the second se | Mitchell<br>Staaten |  | Y | Y | This aggregation of wetlands lies on the older<br>northern and eastern margin of the large fluvial<br>megafan systems that characterise the lower<br>Mitchell basin. The Pliocene fan is formed of<br>outwash from the western Great Dividing Range<br>and lies within an extensive Tertiary sand sheet<br>that forms the Holroyd Plain provinces of the<br>Cape York and Gulf Bioregion. Unlike the<br>Holocene and Pleistocene fan that form the<br>currently active delta and floodplain the Pliocene<br>fan is relatively elevated and non-active and has<br>been weathered laterised and subsequently<br>dissected into an intricate system of dendritic<br>drainage depressions (6.1.1). Non-riverine<br>wetlands are associated with closed depressions<br>formed as pans on ridges in areas of more<br>pronounced weathering and as channel-less<br>waterlogged swampy valleys (dambos) filled with<br>leached fine material (sand silt clay solutes)<br>received in drainage from the surrounding sand<br>sheets (Shellberg 2014). This Pliocene surface<br>has the highest concentrations of dambos in<br>Australia with the best developed expression in<br>the higher rainfall areas within the Cape<br>Bioregion and Alice River sub basin (8.2.5).<br>While the majority of wetlands are seasonal and<br>formed as sunken holes on the late tertiary<br>sandstone seepage from the adjoining sand<br>sheets and deep sandy soils (6.4.1) make them<br>last longer into the dry season than those<br>associated with hardpan areas of the active<br>floodplain (6.3.1). The site is considered to have<br>unique as well as transitional floristic values<br>lying within the cross over from Cape York to<br>Gulf bioregions. The waterlogged sandy plains<br>support a community of wetland associated<br>grasses and emergent aquatic macrophytes<br>comprised of sedges and herbs including an<br>undescribed species of <i>Lindernia</i> spp. and the<br>rare <i>Lobelia douglasiana</i> (Shellberg 2014). The<br>low nutrient status of sandy soils has promoted<br>semi carnivorous genera (6.2.1) within the<br>wetland plants communities including <i>Stylidium</i><br><i>Utricularia and Drosera</i> spp. This low primary<br>productivity has also limited gr | 6.1.1<br>6.2.1<br>6.3.3<br>6.4.1<br>8.2.5 | 4<br>3<br>3<br>4<br>3 | ml_nr_ec_11<br>sn_nr_ec_09 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------|----------------------------|
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------|----------------------------|

|                                  |          |   |   |   | relatively free of grazing pressure and<br>associated weed infestation. Described in part<br>as the 'the way the Cape used to be' the site is<br>considered to include the biggest weed free area<br>of the Cape (6.3.3) (Shellberg 2014).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |               |             |
|----------------------------------|----------|---|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------|-------------|
| Wetland Pans on<br>basement rock | Mitchell | Y | Y | Y | These closed depression wetland pans are<br>similar to those formed within the Pliocene Fan<br>but instead of being formed on residual sands<br>and weathered material are perched as veneers<br>on top of weathered granite and metamorphic<br>rock (6.1.1). Their values have been described<br>on the basis of relatively recent integrated<br>discipline field studies (6.3.3) (Shellberg 2014).<br>This relatively impermeable base prevents water<br>from seeping out laterally and the aquatic<br>habitats within them although seasonal last<br>longer (6.4.1) into the dry season with some<br>being near perennial in wetter years. The near<br>perennial more open examples of these<br>wetlands host rich aquatic macrophyte<br>communities equivalent to 'of concern' Regional<br>Ecosystem 3.3.66 permanent lakes and lagoons<br>frequently with fringing woodlands or sedgelands<br>(5.2.1). Retaining water longer and being in<br>contact with basement rock they tend to be more<br>fertile than other seasonal wetland pans formed<br>in sand sheets (Jeff Shellberg pers. comm.).<br>These wetlands occur in a seasonally arid area<br>of the upper Alice River catchment where<br>surface water is a limited resource through the<br>dry season. All are key bird and wildlife watering<br>sites into the middle to late dry season (6.3.1) in<br>an area that hosts the nationally endangered<br>golden-shouldered parrot <i>Psephotus<br/>chrysopterygius</i> (Shellberg 2014). Due to their<br>drainage isolation many lack obligate aquatic<br>biota such as fish though those connected to<br>drainage seasons can host fish populations<br>seasonally which contribute additional food<br>resources to piscivore wildlife. The endemic tiger<br>crab <i>Austrothelphusa tigrina</i> occurs in the same<br>catchment as these wetlands (which have not<br>been specifically surveyed for aquatic biota) and<br>could be expected to occur within them given the<br>affinity of freshwater crabs for this type of habitat | 5.2.1<br>6.1.1<br>6.3.1<br>6.3.3<br>6.4.1 | 3 3 3 3 3 3 3 | ml_nr_ec_12 |

|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |   |   | elsewhere in the eastern Gulf (J. Tait pers. comm.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |                       |             |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------|-------------|
| Crosbie Mound<br>Springs                                                   | Pontian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mitchell | Y | Y | Mound springs (6.1.1, 6.4.1) are a central geomorphic and hydrologic feature of the Crosbie Creek floodplain. The spring water is sourced from the GAB and Mesozoic aquifers. These mound springs are considered the best developed on Cape York (Shellberg et al. 2015). The alkaline chemistry (6.2.1) of the mound springs support surrounding vegetation similar to RE 3.3.51 normally found on marine plains which has a biodiversity status 'of concern' (5.2.1). A rare Asteraceae plant <i>Pluchea</i> sp. has been collected from the mound spring area. The normally estuarine tadpole goby <i>Chlamydogobius ranunculus</i> has also been collected for unique habitat (6.3.1) and species in the mound spring area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.2.1<br>6.1.1<br>6.2.1<br>6.3.1<br>6.3.3<br>6.4.1 | 3<br>4<br>3<br>4<br>4 | ml_nr_ec_24 |
| My Molloy - Julatten<br>Aggregation Wet<br>Tropics Priority<br>Wetland REs | Image: starting | Mitchell | Y | Y | The upper Mitchell Basin is unique within Gulf<br>Basins in its extension into the Wet Tropics<br>Bioregion. The Wet Tropics climatic zone<br>creates hydrologic regimes that are unique<br>relative to the rest of the eastern Gulf planning<br>area (6.4.1). Seasonally distributed rainfall and<br>associated sustained moisture and perennial<br>aquatic habitat facilitate ecological process that<br>are distinct (6.2.1) relative to the more seasonal<br>habitats and environments that characterise the<br>broader assessment area. Wetlands located in<br>moist cool uplands are a distinct habitat type<br>restricted to the Wet Tropics Bioregion within the<br>planning area (6.3.1). Wet Tropics regional<br>ecosystems in the upper Mitchell Mt Molloy -<br>Julatten area include aggregations of palustrine<br>and lacustrine wetlands with an 'endangered' or<br>'of concern' status (5.2.1) including RE 7.3.1, RE<br>7.3.29, RE 7.3.31, RE 7.8.7, RE 7.11.19, RE<br>7.12.29 and RE 7.12.37. In many cases the<br>threatened status of these regional ecosystems<br>is due to impacts in more developed eastern<br>river basins elsewhere within the Wet Tropics<br>bioregion. The more limited development | 5.2.1<br>6.1.1<br>6.2.1<br>6.3.1<br>6.4.1          | 4<br>3<br>4<br>3      | ml_nr_ec_25 |

|                                                                          |                              |          |   |   |   | pressure within the upper Mitchell has thus far<br>retained these wetlands within a variegated<br>landscape. That most of the wetlands do not<br>occur in isolation but hosted within intact alluvial<br>landscape remnants and connected by<br>vegetated riverine corridors increases the<br>conservation value of this aggregation. Alluvial<br>landscapes hosting these wetlands are also<br>comprised of 'endangered' or 'of concern'<br>regional ecosystems associated with floodplains<br>and frequently inundated areas (e.g. RE 7.3.8,<br>RE 7.3.12, RE 7.3.14, RE 7.3.20, RE 7.3.21, RE<br>7.3.35, RE 7.3.39, RE 7.3.40, RE 7.3.43, RE<br>7.3.45, RE 7.3.48, RE 7.11.41, RE 7.11.48 and<br>RE 7.12.60). Intact floodplain remnants and<br>alluvial landscapes provide a focus for broader<br>catchment based wetland management<br>initiatives that afford protective measures to both<br>the priority wetland regional ecosystems and<br>their host landscapes. Ongoing emerging<br>development pressure in the uplands of the<br>Mitchell basin underpins the need for recognition<br>of the conservation value of wetland associated<br>priority ecosystems. |                         |             |             |
|--------------------------------------------------------------------------|------------------------------|----------|---|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------|-------------|
| Back Plain Swamps<br>at the confluence of<br>the Lynd and Tate<br>rivers | <ul> <li>Torvised</li> </ul> | Mitchell | Y | Y | Y | The confluence of the Lynd and Tate rivers<br>hosts juxtaposed riverine and non-riverine<br>wetland values. During high flows overbank<br>floodplain at the confluence of these rivers<br>generates large back plain swamps a unique<br>geomorphic feature (6.1.1). These support<br>palustrine wetlands RE 2.3.55c which are<br>unusual in terms of their floristic make up which<br>includes unique mixed communities of limited<br>extent representative of several adjoining<br>bioregions that converge on the area. Seasonal<br>swamps on these back plains are dominated by<br>a particularly tall (e.g. 15m) and dense<br>physiognomy <i>Melaleuca viridiflora</i> and/or <i>M.</i><br><i>clarksonii</i> woodland. The ground layer is<br>commonly spike rush <i>Eleocharis</i> spp.These<br>seasonal swamps retain moisture into the dry<br>season on account of their size providing a<br>refugial role (6.3.1) for dependent wildlife<br>including waterbirds which use them as<br>important feeding and moulting sites. On                                                                                                                                   | 6.1.1<br>6.3.1<br>8.2.5 | 3<br>3<br>4 | ml_nr_fl_04 |

|                               |                        |        |   |   | elevated stabilised terraces within the river<br>channels the best example (8.2.5) of another<br>limited extent regional ecosystem RE 2.3.24c<br>occurs. This is a mixed woodland to open forest<br>with rainforest elements and a denser canopy<br>structure afforded by the fire refugia (6.3.1)<br>function of the within channel terraces (6.3.1).<br>This community includes combinations of<br><i>Eucalyptus camaldulensis</i> and the rainforest tree<br><i>Celtis paniculata</i> and several fruit bearing trees<br>including <i>Terminalia platyphylla</i> , <i>Thryptomene</i><br><i>oligandra</i> , <i>Canarium australianum</i> , <i>Parinari</i><br><i>nonda</i> , <i>Margaritaria dubium-traceyi</i> , <i>Antidesma</i><br><i>parvifolium</i> , and <i>Syzygium eucalyptoides</i> . Some<br>of these species are important to frugivorous<br>birds and other wildlife and the denser<br>physiognomy of the vegetation also provides<br>habitat for cover dependent species (6.3.1). |                |     |             |
|-------------------------------|------------------------|--------|---|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|-------------|
| Brannigan Creek<br>floodplain | Anny Ling<br>Materiole | Norman | Y | Y | The Brannigan Creek floodplain is a higher level<br>marine plain not associated with the saline lower<br>area. This area is the start of the big well-<br>developed flat marine plains in the region.<br>Significant values include being a productive<br>recreational fishing area and providing habitat<br>for estuarine crocodiles <i>Crocodylus porosus</i> and<br>large barramundi <i>Lates calcarifer</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.1.4<br>6.3.1 | 4 4 | nn_nr_ec_01 |

| East Creek spring<br>complex        | Cockatop<br>Creek | Norman |  | Υ | The East Creek spring complex is the main<br>concentration of high priority springs in the<br>Norman catchment. It covers the main extent of<br>active high priority artesian springs in Claraville<br>plains.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.4.1<br>7.2.1 | 4 4    | nn_nr_ec_03 |
|-------------------------------------|-------------------|--------|--|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|-------------|
| Yappar River wetland<br>aggregation | Claraville        | Norman |  | Y | During wet season this whole area is under<br>water and access is quite restricted. In this area<br>the harder substrate comes to the surface with<br>large sandsheets. The sandsheets discharge<br>upstream is unique in this area of the system<br>and pooling occurs as a result. The area is<br>thought to continue seeping because of this and<br>the area is seasonally wet. In the recent past<br>(within the last ten years) a big flood event is<br>thought to have scoured this area off.<br>Additionally a large fish and bird kill occurred in<br>2009 in this area. The area is known to get<br>lightning fires followed by flood events straight<br>after. Whilst there are probably other<br>circumstances like this this one in particular is<br>concentrated. | 6.1.1<br>6.3.1 | 2<br>2 | nn_nr_ec_05 |

| Lagoons and ponded<br>area on 40 Mile<br>Creek | Vena Park                                                                                                                                                                                                       | Norman | Y |   | Y | The lagoons and ponded parts of the stream at<br>40 Mile have particular value for waterbirds and<br>fish in this vast dry landscape (Burrows & Perna<br>2006; Jaensch & Richardson 2013). 40 Mile<br>which contains rock bars forms a big lake in dry<br>season and a river channel in the wet.<br>Significant ecological values include refugia<br>breeding habitat and sites lateral and<br>longitudinal connectivity and feeding areas for<br>wildlife such as turtles and macroinvertebrates.                                                                                                     | 6.3.1<br>6.3.4 | 4 4 | nn_nr_ec_09 |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|-------------|
| Carron Forrest<br>country                      | Lotus Vale<br>Stifling<br>Miranda Downs<br>Meggreville<br>Meggreville<br>Miranda Downs<br>Normanton<br>Normanton<br>Meggreville<br>Bavdon Blackbills<br>Tabletop<br>Croydon<br>Inordnic<br>Milgarra<br>Wondoola | Norman |   | Y | Y | The Carron Forrest country contains tiny<br>wetlands along coolabah flats. The area has<br>value as a large interconnected aggregation<br>rather than as individual wetlands. Overflow from<br>the Gilbert is associated with the back swamps<br>however on the sand surfaces the circular<br>wetlands are groundwater recharged. The<br>wetland systems have significant diversity and<br>longevity and contain very thick vegetation<br>including melaleuca swamp box <i>Lophostemon</i><br><i>suaveolens</i> and spear grass. The area is also<br>subject to flash flooding from the Gilbert River. | 6.2.1<br>6.4.1 | 33  | nn_nr_ec_10 |

| Staaten Wyaaba<br>Delta Fan | Inkerman | Staaten | Y | Y | Y | Similar to the Gilbert-Smithburne Delta Fan and<br>the Mitchell Holocene Delta the Staaten-Wyaaba<br>Fan aggregation is a good though less extensive<br>example of a diverse and rich array of alluvial<br>plain wetlands and deep water habitats which<br>characterise the Mitchell-Gilbert Fan province of<br>the Gulf Plains bioregion (8.2.5). The<br>aggregation occurs across the most<br>hydrologically active part of the lower Staaten<br>Basin immediately downstream of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.2.1<br>6.1.1<br>6.2.1<br>6.3.1<br>6.3.4<br>6.4.1 | 3<br>4<br>3<br>4<br>4<br>3 | sn_nr_ec_01 |
|-----------------------------|----------|---------|---|---|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------|-------------|
|                             | Drundu   |         |   |   |   | basin immediately downstream of the<br>confluences of the basins major sub catchments.<br>Downstream of this point flood flows break out in<br>multiple anastomosing distributary channels<br>across Pleistocene aged floodplain surfaces<br>before splaying and diverging across the active<br>younger Holocene aged delta. Dinah Island<br>formed by delta anabranch channels lies within<br>the active delta and has developed scroll bars<br>and oxbow lagoon habitats formed from past<br>channel meanders. Floodplain overflow from the<br>Mitchell basin are also a critical water supply to<br>the aggregation (6.2.1). The sites includes a<br>high diversity of alluvial landform elements<br>including: closed depressions (lakes oxbows<br>swamps) and open depressions (lakes oxbows<br>swamps) and open depressions (drainage<br>depression stream channel stream bed swamp)<br>within a flat upland comprising plains fans back<br>plains and floodouts. Flood inundation and flows<br>are integral to site values associated with its<br>dynamic geomorphological hydrological and<br>ecological form and function. Its lower position in<br>the landscape means it is more frequently<br>inundated connected and scoured by channel<br>outbreak flows than less active more elevated<br>floodplain areas (6.4.1). The geomorphic setting<br>forms shallow alluvial aquifers and deeper<br>channels and off river waterholes which both<br>support ecologically important aquatic refugia<br>(6.3.1) with potential importance as climate<br>change refuges (6.3.4). As described for the<br>Mitchell flood inundation across this area would<br>provide a 'floodplain subsidy' to aquatic food |                                                    |                            |             |
|                             |          |         |   |   |   | chains and fishery productivity within adjoining<br>riverine and downstream estuarine systems<br>(6.2.1) (Jardine et al. 2012; Hunt et al. 2012).<br>Wetlands within the aggregation function as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                            |             |

|                                                                                                 |        |         |   |   | important breeding sites for aquatic species and<br>provide nursery habitat for fishery species<br>including barramundi <i>Lates calcarifer</i> (6.3.1).<br>Deep waterholes such as Old Dorunda Crossing<br>Elvis Lagoon Mentana and Lake Condor have<br>high fish species diversity (Hogan et al. 2009).<br>They also support breeding roosting feeding and<br>moulting habitats for a diverse range of<br>waterbirds. The friable silty alluvium of the delta<br>has a greater nutrient status and moisture<br>retaining capacity that older finer floodplain soils<br>and supports a host of fringing wetland<br>associated regional ecosystems on fertile levees<br>including some with 'of concern' biodiversity<br>status e.g. many good examples of RE 2.3.16:<br>billabongs (abandoned channels) on active<br>Quaternary alluvial plains fringed with<br><i>Eucalyptus</i> spp. <i>Corymbia</i> spp. and Melaleuca<br>spp. (5.2.1).                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                  |             |
|-------------------------------------------------------------------------------------------------|--------|---------|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|-------------|
| Block valley lakes<br>and back plain<br>swampy wetlands on<br>well developed sandy<br>alluvials | Byeing | Staaten | Y | Y | This is a disjunct aggregation of back plain<br>swampy wetlands occurring on well-developed<br>sandy alluvials which occurs within a distinct<br>geomorphic feature (6.1.1) partially formed by<br>the blocking of tributary valleys by active main<br>channel alluvial deposits. Seepage from<br>adjoining alluvial sands and older adjoining sand<br>sheet uplands contribute to the retention of<br>water within some wetlands into the dry season<br>providing a contemporary (6.3.1) and potential<br>future (6.3.4) aquatic refugia role. The<br>aggregation is comprised of three palustrine<br>regional ecosystems RE 2.3.55b and RE<br>2.3.55c: Seasonal tree swamps <i>Melaleuca</i><br><i>viridiflora</i> and/or <i>M. clarksonii</i> low woodland in<br>closed depressions on Tertiary to Quaternary<br>deposits, and RE 2.3.34d: Seasonal swamps.<br><i>Eucalyptus camaldulensis</i> woodland and sedges<br>in circular depressions on podsolic soils. All<br>three include a ground layer that is a<br>combination of tussock grasses sedges and<br>forbs. These include many aquatic macrophytes<br>that are important feeding nesting and moulting<br>habitat for waterbirds (6.3.1) including<br><i>Pseudoraphis spinescens, Nymphoides indica</i><br><i>Eleocharis</i> spp. <i>Marsilea</i> spp. and <i>Oryza</i> | 6.1.1<br>6.3.1<br>6.3.4<br>6.4.1 | 4<br>3<br>3<br>3 | sn_nr_ec_02 |

|                                                                              |                     |   |   | australiensis. They also include small unwooded<br>areas and open water. Small lacustrine habitats<br>within the back plains are also associated with<br>cut-off meander or prior channel riverine<br>wetlands defined as RE 2.3.24: <i>Melaleuca</i> spp.<br>woodland-open forest on sands in channels and<br>on levees. These wetlands are hosted within two<br>floodplain REs including RE 2.3.11: <i>Eucalyptus</i><br><i>microtheca, Excoecaria parvifolia</i> open<br>woodland and <i>Dichanthium</i> spp. on grey clay<br>plains and RE 2.3.28: <i>Melaleuca</i> spp. woodland<br>in depressions and shallow valleys on solodised<br>soils and pale earths.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |     |                    |
|------------------------------------------------------------------------------|---------------------|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|--------------------|
| Subterranean aquatic<br>cave habitats<br>associated with<br>Limestone karsts | Mitchell<br>Gilbert | Y | Y | This area was identified as being of State<br>significance in the Einasleigh Uplands<br>Biodiversity Planning Assessment (BPA)<br>(eiu_fa_22):<br>la (centre of endemism): HIGH<br>lb (wildlife refugia): VERY HIGH<br>lc (disjunct populations): VERY HIGH<br>ld (taxa at the limits of their ranges): HIGH<br>le (high species richness): VERY HIGH<br>lj (significant breeding or roosting sites): VERY<br>HIGH<br>This covers limestone outcrops across the<br>bioregion. The outcrops and the associated<br>caves are an important refugia or breeding site<br>for many species. The specialised habitats<br>associated with the limestone outcrops and<br>caves support endemic fauna including obligate<br>cave-dwellers such as relictual stygofauna and<br>other troglomorphic species as well as other<br>invertebrate species. Numerous bat species<br>roost and breed in the caves including the<br>eastern bent-wing bat <i>Miniopterus schreibersii</i> ,<br>the little bent-wing bat <i>Miniopterus schreibersii</i> ,<br>the eastern dusky leaf-nosed bat <i>Hipposideros ater</i><br><i>aruensis</i> , and the diadem leaf-nosed bat<br><i>Hipposideros diadema</i> . Area includes 500m<br>buffer from the limestone outcrop. | 6.1.1<br>6.3.1 | 4 4 | Not<br>Implemented |

|                                                          |          |   |   |   | Uplands Biodiversity Planning Assessment. The<br>wetland component relates to subterranean<br>aquatic cave habitats associated with Limestone<br>karst (subterranean systems with a large void<br>size). This decision could not be implemented<br>because subterranean aquatic cave wetlands<br>are not represented in the non-riverine and<br>riverine spatial units used for the assessments.             |                |        |                    |
|----------------------------------------------------------|----------|---|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|--------------------|
| Wetland aggregation<br>near Ridley and<br>Warrigal Creek | Norman   |   |   | Y | This wetland aggregation contains circular<br>isolated wetlands kept alive for a long time by<br>ground water discharge. It is a typical wetland<br>aggregation because of hard pan underlay and<br>the depressions contained within are ground<br>water fed. This whole sandsheet area is poorly<br>known.<br>Note: this decision could not be implemented<br>due to uncertainty in spatial implementation. | 6.4.1<br>7.2.1 | 3<br>3 | Not<br>Implemented |
| Melaleuca dealbata<br>swales and dunes                   | Mitchell | Y | Y | Y | Melaleuca dealbata swales and dunes. Does not<br>occur anywhere else in the Gulf Plains. Rare in<br>the Gulf catchments. Dominated by an unusual<br>flora and fauna values. Isolated southern<br>species such as the southern extent of swamp<br>fish fauna.<br>Note: this decision could not be implemented<br>due to uncertainty in spatial implementation.                                                | 5.2.1          | 3      | Not<br>Implemented |

 $^{1}$ R — Riverine, NR — Non-riverine.

<sup>2</sup>Criteria, indicators and measures (used in AquaBAMM).

<sup>3</sup>Conservation rating between 1 (Low) and 4 (Very High).

## Table 16. Riverine special features and their values

| Special Feature<br>Name         |                                                                  | Study Area | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                 | СІМ                     | Cons.<br>Rating | Special<br>Feature ID |
|---------------------------------|------------------------------------------------------------------|------------|----|----|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|-----------------------|
| Upper Woolgar River             | Gregory Range<br>Sopppar                                         | Flinders   |    |    | Y  | The upper Woolgar River is a spring fed system<br>fed purely by groundwater. The springs in this<br>area contain a metamorphic basement which is<br>unlike other areas of springs in the region which<br>have a sand basement. The system has deep<br>running water and is thought to support water<br>gums. Although the flora & fauna values are<br>largely unknown, the area is likely to have value<br>as refugia. | 6.1.1<br>6.4.1<br>7.2.1 | 4 4 4           | fl_r_ec_01            |
| Flinders River near<br>Marathon | Gemoka Richmond<br>Lucindale<br>Gassilis<br>Cassilis<br>Cassilis | Flinders   |    |    | Y  | This section of the Flinders River contains first<br>time braided systems that appear deeply<br>incised. The area experiences lateral<br>connectivity and provides refugia in and around<br>the semi-permanent/permanent waterbodies.                                                                                                                                                                                  | 6.1.1<br>6.3.1<br>6.3.4 | 3<br>3<br>3     | fl_r_ec_02            |

| Special Feature<br>Name    |                                                                                                                                                                        | Study Area | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                      | СІМ                     | Cons.<br>Rating | Special<br>Feature ID |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|-----------------------|
| Washpool Lagoon<br>complex | Taldora<br>Lyrian Bayamati<br>Arizona Malpar<br>Namil Downs Malpar<br>Etta Plains Millangera<br>Balootha<br>Liiy Pond Dalgonaliy<br>Dalgonaliy<br>Flers Flers Wigitira | Flinders   | Y  |    | Y  | The washpool lagoon complex is formed by a constriction from the shale hills and sand sheets. The complex is the best development of deep pools and braiding on the Flinders River. With good lateral connectivity, persistent waterholes and a large concentration of palustrine systems, the area contains significant ecological values.                                                                 | 6.2.1                   | 4               | fl_r_ec_03            |
| Williams River             | Balootha<br>Byrmine<br>Digonaliy<br>Zingari<br>Caimmeray<br>Caiwarra<br>Caiwarra<br>Corindi                                                                            | Flinders   | Y  | Y  | Y  | This section of the Williams River is always a<br>very wet blue grass grassland; blue grass<br>occurs in this area whilst most other areas have<br>Mitchell grass. The riparian area functions as a<br>wetland holding water for a long time after it fills.<br>The area therefore has good fertility and<br>productivity and provides refuge for a long time.<br>Areas such as these are quite restricted. | 6.2.1<br>6.3.1<br>6.3.4 | 3<br>3<br>3     | fl_r_ec_04            |
| Special Feature<br>Name |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Study Area | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                         | СІМ            | Cons.<br>Rating | Special<br>Feature ID |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|-----------------------|
| Cat Creek swamp         | Alcala<br>Violet Vale<br>Beliman<br>Clonagh<br>Cossvoid<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantine<br>Constantin                                                                                    | Flinders   |    |    | Y  | The Cat Creek Swamp is a seasonal<br>wetland/persistent waterbody that experiences a<br>lot of water cycling. It is covered by regional<br>ecosystem 2.3.3b.<br>Note: This decision was implemented as a<br>riverine decision as no non-riverine spatial units<br>occurred at the nominated location.                                                                                                                          | 6.2.1          | 3               | fl_r_ec_05            |
| Soda valley area        | Boonderor<br>Fire<br>Boonderor<br>Fire<br>Mile Creck<br>Spring Valley<br>Free<br>Mile Creck<br>Spring Valley<br>Forver Valley<br>Bornderor<br>Fire<br>Mile Creck<br>Sendower<br>Free<br>Mile Creck<br>Sendower<br>Free<br>Free<br>Mile Creck<br>Sendower<br>Free<br>Mile Creck<br>Sendower<br>Free<br>Mile Creck<br>Sendower<br>Free<br>Free<br>Mile Creck<br>Sendower<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free<br>Free | Flinders   |    | Y  | Y  | The Soda valley area contains a significant local<br>cluster of unique sodic springs in upper<br>tributaries. Currently, there are no springs<br>mapped in the wetlands mapping for this area.<br>The palustrine wetlands covered by this special<br>area contain regional ecosystem 9.3.10.<br>Additionally, the springs in this region discharge<br>on shale not basalt which is unlike other basalt<br>springs in the area. | 6.1.1<br>6.4.1 | 3<br>3          | fl_r_ec_06            |

| Special Feature<br>Name                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Study Area | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | СІМ                     | Cons.<br>Rating | Special<br>Feature ID |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|-----------------------|
| Intersection of<br>Flinders & Saxby<br>rivers      | Magowra<br>Plain Greek<br>Inverligh<br>Wernedings<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Macelister<br>Mac | Flinders   | Y  |    | Y  | The intersection of the Flinders and Saxby rivers<br>has a good diversity and concentration of deep<br>waterholes within the drainage channel. These<br>waterholes provide refugia and habitat that are<br>connected to the estuarine systems, making<br>them important for fish migration and spawning.<br>There is also high potential for waterbird<br>colonies of sarus crane <i>Grus antigone</i> , pelican<br><i>Pelecanus conspicillatus</i> , black-necked stork -<br><i>Ephippiorhynchus asiaticus</i> and brolga <i>Grus</i><br><i>rubicunda</i> . | 6.3.1<br>6.3.4<br>7.1.2 | 4 4 4           | fl_r_ec_07            |
| Deep water holes just<br>above estuarine<br>extent | Flinders<br>River<br>Nermanber<br>Nermanber<br>Nermanber<br>Nermanber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Flinders   | Y  |    | Y  | These deep waterholes occur in the hard pan<br>systems just before the river enters the<br>estuarine area. They provide valuable nursery<br>habitat and are riverine just above the estuarine<br>extent. Such waterholes include Walker's Bend<br>on the Flinders and the Burke & Wills Crossing<br>waterhole on the Bynoe, both supporting high<br>fish species diversity (Hogan & Vallance 2005).                                                                                                                                                          | 6.3.1<br>7.5.1          | 4 4             | fl_r_ec_08            |

| Special Feature<br>Name        |                                                                   | Study Area | fa | fl | ес | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | СІМ                     | Cons.<br>Rating | Special<br>Feature ID |
|--------------------------------|-------------------------------------------------------------------|------------|----|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|-----------------------|
| Porcupine and Prairie<br>Gorge | Ready Spring<br>Gargoon,                                          | Flinders   | Y  | Y  | Y  | This area was identified as being of State<br>significance in the Einasleigh Uplands<br>Biodiversity Planning Assessment (BPA)<br>(eiu_fa_01):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.3.1<br>6.3.3<br>7.2.1 | 4<br>4<br>4     | fl_r_ec_09            |
|                                | Siturgion Mit Emu Plains                                          |            |    |    |    | lb (wildlife refugia): VERY HIGH<br>Ic (disjunct populations): VERY HIGH<br>Ie (high species richness): HIGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                 |                       |
|                                | Fire Mile<br>Bring Valley<br>Torver Valley<br>Gendower<br>Warrean |            |    |    |    | Values listed in the BPA include: the area<br>contains spring-fed refuge for northern<br>purplespotted gudgeon <i>Mogurnda mogurnda</i> ,<br>spangled perch <i>Leiopotherapon unicolor</i> and<br>eastern rainbowfish <i>Melanotaenia splendida</i> .<br>The only permanent clear water in the Flinders<br>River system. The area identified includes a<br>500m buffer from the scarp edge.                                                                                                                                                                                                                                                                                                            |                         |                 |                       |
|                                |                                                                   |            |    |    |    | Additional values provided by the Southern Gulf<br>of Carpentaria wetland ecology expert panel<br>include: The springs feeding the gorge provides<br>a clear water stable perennial flow that occurs<br>nowhere else in the catchment. The gorge,<br>which is downstream of the springs, contains a<br>series of pools. Northern purplespotted<br>gudgeons <i>Mogurnda mogurnda</i> are the most<br>significant fish fauna in this area, only occurring<br>in this region). Invertebrate species present are<br>also quite unique (despite the families being<br>quite common). Additionally, there is a diversity<br>of aquatic flora with the presence of about six<br>primitive species found here. |                         |                 |                       |

| Special Feature<br>Name                   | Study Area                                           | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CIM                                                         | Cons.<br>Rating                 | Special<br>Feature ID                                              |
|-------------------------------------------|------------------------------------------------------|----|----|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------|
| Perennial waterholes<br>in active streams | Mitchell<br>Staaten<br>Gilbert<br>Norman<br>Flinders | Y  |    | Y  | In the seasonally dry tropics of the Eastern Gulf,<br>perennial waterholes in active streams provide<br>critical refugial (6.3.1) dry season habitat for<br>obligate freshwater species including<br>conservation dependent and listed species such<br>as juvenile freshwater sawfish <i>Pristis pristis</i> and<br>snapping turtles and represent a priority aquatic<br>ecosystems (5.2.1). They are also important for<br>migratory fish species (7.1.2) in particular sooty<br>grunter <i>Hephaestus fuliginosus</i> and adult phase<br>eel tailed catfish. Permanent waterholes in<br>active streams support a range of ecological<br>processes that are distinct relative to the more<br>extensive seasonal aquatic habitats that<br>characterise the eastern Gulf (6.2.1). Within the<br>seasonally dry climate of the eastern Gulf the<br>presence of permanent freshwater usually owes<br>its existence to a combination of special<br>geomorphic features (6.1.1) and hydrological<br>regimes (6.4.1). Within the suite of exiting<br>perennial waterholes are subset will also have<br>an increasingly important role as refugia within<br>the increasingly variable rainfall and elevated<br>temperature regimes predicted under climate<br>change (6.4.1).<br>Note: This decision was implemented as riverine<br>special features. | 5.2.1<br>6.1.1<br>6.2.1<br>6.3.1<br>6.3.4<br>6.4.1<br>7.1.2 | 3<br>3<br>4<br>3<br>3<br>3<br>3 | fl_r_ec_10<br>gi_r_ec_12<br>ml_r_ec_06<br>nn_r_ec_04<br>sn_r_ec_06 |

| Special Feature<br>Name |                                                                               | Study Area | fa | fl | ec | Values | СІМ | Cons.<br>Rating | Special<br>Feature ID |
|-------------------------|-------------------------------------------------------------------------------|------------|----|----|----|--------|-----|-----------------|-----------------------|
|                         | Kowanyanta<br>Kowanyanta<br>Karumta<br>Normanton<br>Mount Suprise<br>Googbown |            |    |    |    |        |     |                 |                       |
|                         | Karumba<br>Normanton<br>Georgetown                                            |            |    |    |    |        |     |                 |                       |

| Special Feature<br>Name            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Study Area | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | СІМ   | Cons.<br>Rating | Special<br>Feature ID |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|----|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|-----------------------|
|                                    | Kovanyama<br>Normanton<br>Georgetown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |    |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                 |                       |
| Lower Flinders River<br>floodplain | Finder<br>Normanion<br>Magwirz<br>Pinin Creek<br>Normanio<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellister<br>Masellis |            | Y  |    | Y  | This area was identified as being of Regional significance in the Gulf Plains Biodiversity Planning Assessment (BPA) (gup_l_38):<br>Ib (wildlife refugia): HIGH<br>Ie (high species diversity): HIGH<br>Ii (high density of hollow-bearing habitat trees):<br>HIGH.<br>Concentration of off-stream wetlands on<br>scoured floodplain and extensive water holes<br>associated with lower Flinders River. High fauna<br>diversity, particularly of frogs, e.g. northern<br>waterfrog <i>Litoria dahlii</i> , and birds, e.g. <i>radjah</i><br><i>shelduck Tadorna radjah</i> (Queensland Museum<br>data, Birdlife Australia Atlas data). Recorded<br>presence of threatened green sawfish <i>Pristis</i><br><i>zijsron</i> and pictorella mannikin <i>Heteromunia</i><br><i>pectoralis</i> , and uncommon freshwater whipray<br><i>Himantura dalyensis</i> . | 6.3.1 | 3               | fl_r_ec_11            |

| Special Feature<br>Name                                  |                       | Study Area | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | СІМ            | Cons.<br>Rating | Special<br>Feature ID |
|----------------------------------------------------------|-----------------------|------------|----|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|-----------------------|
| Dalgonally Swamps                                        | Brinne                | Flinders   | Y  |    | Y  | This area was identified as being of Regional significance in the Gulf Plains Biodiversity Planning Assessment (BPA) (gup_l_06):<br>Ib (wildlife refugia): HIGH<br>Ig (REs show distinct variation in species composition): VERY HIGH<br>Ih (artificial waterbody or managed/manipulated wetland of ecological significance): HIGH<br>Very wet grassland which is atypical for the system. Confined floodplain. The lowest part in the area and the water pools here is a refuge and stays wet for a long period. Most of the other wetlands in this area dry out quickly. Not so much standing water as just staying damp for extended periods. Used by a variety of waterbirds including black-necked stork <i>Ephippiorhynchus asiaticus</i> , as well as threatened grey falcon <i>Falco hypoleucos</i> (Birdlife Australia Atlas data). Significant pig populations.                                                                     | 6.3.1          | 3               | fl_r_ec_12            |
| Seasonally inundated<br>channels of the Gilliat<br>River | Concurry<br>Cloncurry | Flinders   |    | Y  |    | Seasonally inundated channels of the Gilliat<br>river are characterised by RE 2.3.43:<br><i>Sporobolus mitchellii, Elytrophorus spicatus,</i><br><i>Oryza sp., Juncus sp. and Ipomoea</i><br><i>diamantinensis</i> in mixed tussock grasslands on<br>seasonally inundated alluvial plains and<br>Regional Ecosystem 2.3.21: <i>Eucalyptus</i><br><i>leptophleba</i> and <i>Corymbia spp.</i> woodland on<br>low rises and plains on fine sands and red<br>earths. These floodplains are a unique<br>ecosystem (5.2.1) dominated by rare plant<br>species not represented elsewhere. Following<br>wet season inundation which delivers nutrients<br>to the floodplain their fine sandy soils retain<br>moisture well into the dry season creating a<br>refugial area (6.3.1) of floodplain productivity<br>that in combination with near-perennial and less<br>common perennial channel hosted waterholes<br>sustains local fauna populations. | 5.2.1<br>6.3.1 | 4 4             | fl_r_fl_01            |

| Special Feature<br>Name                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Study Area | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | СІМ                              | Cons.<br>Rating | Special<br>Feature ID |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------|-----------------------|
| Gilbert catchment<br>bottleneck (Gilbert<br>and Einasleigh<br>junction) | Corrienter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gilbert    | Y  |    | Y  | These waterholes in the Gilbert catchment<br>bottleneck are very dynamic, very confined, long<br>standing waterholes. The waterholes are also<br>very sandy and very deep with permanent water<br>and numerous off stream lagoons. This section<br>of the Gilbert catchment experiences the Venturi<br>effect, i.e. a reduction in water pressure that<br>results when a water flows through a constricted<br>area), which can result in scaring. The area is<br>geomorphologically significant, contains good<br>refugial values, high diversity of species,<br>including threatened species and sawfish, and<br>provides good habitat for fresh <i>Crocodylus</i><br><i>johnstoni</i> and estuarine crocodiles - <i>C. porosus</i> .<br>High fish species diversity recorded in Chillagoe<br>Crossing and Bobby Towns waterholes<br>(Ecowise Environmental 2007). | 6.1.1<br>6.3.1<br>6.4.1<br>6.3.4 | 4 4 4 4         | gi_r_ec_01            |
| Lower Einasleigh<br>waterholes                                          | Balimba<br>Revensiveriti<br>Tarivide<br>Byerley<br>Ensistigh<br>Minntes<br>Hinry Alleder<br>Builder<br>Byerley<br>Ensistigh<br>Numres<br>Hinry Alleder<br>Byerley<br>Eden Vale<br>Dagworth<br>Tabietop<br>Croydon<br>Tabietop<br>Croydon<br>Tabietop<br>Croydon<br>Tabietop<br>Croydon<br>Tabietop<br>Croydon<br>Tabietop<br>Croydon<br>Tabietop<br>Croydon<br>Tabietop<br>Croydon<br>Tabietop<br>Croydon<br>Tabietop<br>Croydon<br>Tabietop<br>Croydon<br>Tabietop<br>Croydon<br>Tabietop<br>Croydon<br>Tabietop<br>Croydon<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Component<br>Com | Gilbert    | Y  |    | Y  | The lower Einasleigh waterholes have had<br>permanent flows through this system in the last<br>two years. They receive localised soaks and are<br>likely to contain sawfish species. Currently<br>knowledge of this area is lacking however it has<br>been identified as a special feature because of<br>its importance as a waterbody in a dry<br>environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.2.1                            | 4               | gi_r_ec_02            |

| Special Feature<br>Name                                                                    |                                                        | Study Area | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                             | СІМ                     | Cons.<br>Rating | Special<br>Feature ID |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------|------------|----|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|-----------------------|
| Einasleigh River<br>gorges                                                                 | Batleringe<br>Degworts<br>Comme<br>Gorgetown           | Gilbert    | Y  |    | Y  | This area of the Einasleigh River is called The<br>Race. It is characterised by basalt flows, which<br>form a gorge up to Junction Creek. The area<br>has unique geomorphology, a rock basement<br>and contains permanent water. Northern quolls<br><i>Dasyurus hallucatus</i> and water rats <i>Hydromys</i><br><i>chrysogaster</i> are also known to be present. | 6.1.1<br>6.3.1          | 4 4             | gi_r_ec_03            |
| Aquatic habitats<br>associated with the<br>sandstone<br>headwaters of the<br>Gilbert River | Cierrora<br>Fog Creek<br>Bellfield<br>Vitim Strettpark | Gilbert    | Y  | Y  | Y  | The Langdon area is located within the<br>sandstone headwaters of the Gilbert River. The<br>area provides refugia for flora and fauna and<br>has similar values to the sandstone gorges<br>identified in the top of the Norman catchment.                                                                                                                          | 6.1.1<br>6.3.1<br>6.3.4 | 4 4 4           | gi_r_ec_04            |

| Special Feature<br>Name                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Study Area | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | СІМ                     | Cons.<br>Rating | Special<br>Feature ID |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|-----------------------|
| Einasleigh River<br>spring fed system             | Cegragiowin<br>Begragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegragiowin<br>Cegrag                                                                     | Gilbert    | Y  |    | Y  | This part of the Einasleigh River is a ground<br>water dependent system from the Einasleigh<br>headwaters to the gorge. It provides perennial<br>flow, wildlife refugia and habitat for freshwater<br>crocodiles <i>Crocodylus johnstoni</i> .                                                                                                                                                                                                                                                                                                                    | 6.3.1<br>6.3.4<br>7.2.1 | 4 4 4           | gi_r_ec_05            |
| Aquifer near the<br>Rockfields gauging<br>station | Strathmore<br>Edgn Vale<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme<br>Forme | Gilbert    | Y  |    | Y  | This aquifer near Rockfields gauging station<br>contains a lot of distinct and special habitat for<br>unique groundwater fauna, including<br>stygofauna. This area provides some of the<br>most significant water resources in the Gilbert<br>River. This area highlights hyporheic fauna and<br>ecology in this catchment that continue a long<br>way up and down the stream. The rocky creek is<br>thought to be the ancient channel of the Gilbert.<br>The area is under significant threat from a<br>proposed dam site upstream of this site at Mt<br>Sircom. | 6.2.1<br>6.3.1          | 3<br>3          | gi_r_ec_06            |

| Special Feature<br>Name |                                       | Study Area | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | СІМ                                                | Cons.<br>Rating            | Special<br>Feature ID |
|-------------------------|---------------------------------------|------------|----|----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------|-----------------------|
| Cobbold Gorge           | Creen Hills<br>Forssytin<br>Robinnood | Gilbert    | Y  | Y  | Y  | The Cobbold Gorge is located close to the junction with the Robertson river. There is a unique spring located in this gorge. It is recognised that the damming effect associated with organic matter build up that occurs in this area is one that is unique and should be protected. In addition, the area has interesting springs, sandstone faces, and unusual terrestrial ecology. The gorge is also unusual in that it is deep and it is well documented that this gorge is the only significant waterbody in the entire sandstone block (although other waterholes in the region remain unexplored). The gorge contains areas of refugia for fish and freshwater crocodiles <i>Crocodylus johnstoni</i> , as well as refugial rainforest flora species in riparian communities. Deep waterholes such as Fish Hole and Cobbold Gorge are recognised for their high freshwater fish diversity (Ecowise Environmental 2007). | 6.1.1<br>6.2.1<br>6.3.1<br>6.3.4<br>6.4.1<br>7.2.1 | 3<br>3<br>3<br>3<br>3<br>3 | gi_r_ec_07            |
| Copperfield Gorge       | Ennsteign :                           | Gilbert    | Y  |    | Y  | Copperfield Gorge is interesting geologically and<br>very different to Cobbold Gorge. The gorge has<br>a column of basalt through it and sandy<br>waterholes at the bottom. There are only two or<br>three of these types of waterholes in the Gilbert<br>catchment. These areas contain significant<br>refugial values. The gorge has also recently<br>undergone a change in management, with timed<br>releases of water that is leading to an<br>improvement in health. As a result of these<br>releases, the system keeps flowing slightly<br>longer than others in the region.                                                                                                                                                                                                                                                                                                                                              | 6.1.1<br>6.3.1<br>6.3.4                            | 2 2 2                      | gi_r_ec_08            |

| Special Feature<br>Name         |                                                                                                                                                                                                                          | Study Area          | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | СІМ                     | Cons.<br>Rating | Special<br>Feature ID    |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----|----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|--------------------------|
| Gilbert-Smithburne<br>delta fan | Loture Vale<br>Burnylung<br>Warmon<br>Karmina<br>Loture Vale<br>Burling<br>Burnylung<br>Wargervite<br>Karmina<br>Karmina<br>Karmina<br>Karmina<br>Karmina<br>Karmina<br>Karmina                                          | Gilbert             | Y  |    |    | The Gilbert-Smithburne delta fan is full of<br>waterbird colonies and is a particular stronghold<br>for the sarus crane Grus antigone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.1.4                   | 4               | gi_r_ec_09               |
| Wetland complexes               | Bulleringt Lyndbrock   Dagworth Gridungt Roundt   Mutert turner Surplast Bunger still   Gorgstown Bunger still Geingt oren   Brussleigh Spring Greet Migo Of   Robinhood Klaster Groenzete   Otherren Syndhrunst Pintage | Gilbert<br>Mitchell | Y  | Y  | Y  | Selected wetland complexes identified as being<br>of State significance in the Einasleigh Uplands<br>BPA (eiu_I_09):<br>Ib (wildlife refugia): VERY HIGH<br>Id (taxa at the limits of their ranges): HIGH<br>Ie (high species richness): VERY HIGH<br>Ig (REs with distinct variation): HIGH<br>Ii (high density of hollow-bearing trees): VERY<br>HIGH<br>Ij (significant breeding or roosting sites): HIGH<br>Values listed in the BPA include: One of the<br>primary concerns for biodiversity assessment<br>and planning in undeveloped regions is that<br>biodiversity conservation and management be<br>pursued at a landscape scale. This is<br>particularly so for wetlands. In undeveloped<br>landscapes the aim is to retain wetlands within<br>their landscape context, not to restrict the focus<br>to the wetland body itself. In these landscapes<br>there is the opportunity to ensure that landscape<br>elements that directly relate to wetlands and<br>contribute to their values are identified in<br>association with the wetland itself; 12 wetland<br>complexes in the EIU are so significant that they<br>particularly need to be addressed at the | 6.1.1<br>6.3.1<br>6.3.3 | 4 4 4           | gi_r_ec_10<br>ml_r_ec_17 |

| Special Feature<br>Name                                                 |                                                                                         | Study Area                     | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | СІМ                              | Cons.<br>Rating  | Special<br>Feature ID                  |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------|----|----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|----------------------------------------|
|                                                                         | Lyndbrook<br>Bir Homma<br>Manutian<br>Damper Hill                                       |                                |    |    |    | landscape scale.<br>Additional values provided by the Southern Gulf<br>of Carpentaria wetland ecology expert panel<br>include: These wetlands have a very localised<br>feed, mostly from southeast although they are<br>modified by drainage. The area has basalt to the<br>south/west and granite/rhyolite to the north east<br>as well as tertiary residuals. The main floodplain<br>complex is upstream of the Einasleigh township.<br>Some of the largest freshwater crocodiles<br>Crocodylus johnstoni are known from this area.<br>The area is related to the Blackbraes lava flow<br>and contains combined basalt systems, a<br>mosaic of springs and waterholes. These<br>systems are unique in a state wide context. The<br>most southern decision is remnant of old tertiary<br>surface with two wetlands in depressions.                                                                   |                                  |                  |                                        |
| Mixed woodland on<br>levees in active<br>Quaternary alluvial<br>systems | Catibratita<br>Dorunda<br>Macaroni<br>Vanrook<br>Eduts Vale<br>Bifting<br>Miranda Downs | Gilbert<br>Mitchell<br>Staaten | Y  | Y  | Y  | Regional Ecosystem 2.3.21c is a mixed<br>floodplain woodland, which represents a limited<br>unique form (5.2.1) of a broader regional<br>ecosystem comprised of unique combinations of<br>species that do not occur together or within the<br>broader regional ecosystem at all including<br><i>Eucalyptus microtheca, Corymbia polycarpa. C.</i><br><i>bella and C. confertiflora.</i> Occasional canopy<br>species include <i>Terminalia platyphylla</i> and<br><i>Cathormion umbellatum.</i> A secondary tree layer<br>commonly occurs, including the palm <i>Corypha</i><br><i>utan</i> and guttapercha <i>Excoecaria parvifolia.</i> This<br>RE occurs only on elevated levees (6.1.1) in<br>active Quaternary alluvial systems where it<br>functions as a flood refuge (6.3.1) for fauna. It is<br>also known to provide nesting habitat for<br>estuarine crocodiles <i>Crocodylus porosus.</i> | 5.2.1<br>6.1.1<br>6.2.1<br>6.3.1 | 3<br>3<br>3<br>3 | gi_r_ec_11<br>ml_r_ec_04<br>sn_r_ec_02 |

| Special Feature<br>Name |                                                                                                     | Study Area | fa | fl | ec | Values | СІМ | Cons.<br>Rating | Special<br>Feature ID |
|-------------------------|-----------------------------------------------------------------------------------------------------|------------|----|----|----|--------|-----|-----------------|-----------------------|
|                         | Kownygfmu                                                                                           |            |    |    |    |        |     |                 |                       |
|                         | Dunbuk<br>Interman<br>Cateronie<br>Beruncia<br>Bacaronie<br>Lotus Vale<br>Stifling<br>Miranda Downs |            |    |    |    |        |     |                 |                       |

| Special Feature<br>Name                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Study Area                     | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | СІМ                     | Cons.<br>Rating | Special<br>Feature ID                  |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|----------------------------------------|
| Creeks associated<br>with the Talaroo<br>springs complex                                                         | Public de la constant | Gilbert                        | Y  |    | Y  | The Talaroo springs complex consists of a 5 to<br>10m high mound composed of travertine (a form<br>of limestone). The spring complex covers<br>approximately 6 ha and flow at an extremely<br>slow rate forming terraces and ridges (termed<br>barrages). Water pools and then flows over<br>barrages to the next terrace and so on.<br>Historically, the spring complex drained into<br>three streams connected with the Einasleigh<br>River. Presently, Dunny creek and Pool creek<br>are connected to the Einasleigh River. The<br>ecosystems associated with Talaroo Springs<br>include rare and endemic species. For example,<br>a species of snail identified as <i>Gabbia affinis</i><br>was found in Wallaby and Goodaba creeks. This<br>species is only found in north-western<br>Queensland and may also be a new species. A<br>dragonfly from two of the drainage streams is<br>also unusual and may be undescribed. See<br>Negus et al. (2013) for more detail.                                                                                              | 5.2.1<br>6.3.1<br>6.4.1 | 4 4 4           | gi_r_ec_13                             |
| Mixed woodland to<br>open forest on<br>elevated, stabilised<br>terraces in channels<br>of larger<br>watercourses | Birthmore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mitchell<br>Staaten<br>Gilbert | Y  | Y  |    | Regional Ecosystem 2.3.24c is a Melaleuca spp.<br>woodland-open forest containing significant<br>rainforest elements in a riverine or fringing<br>riverine wetland which occurs on elevated,<br>stabilised terraces in channels of larger<br>watercourses. Regional Ecosystem 2.3.53 is an<br>evergreen notophyll vine forest is a rare (within<br>Gulf catchments) remnant rainforest fringing<br>riverine wetland (5.2.1) which occurs on fringes<br>and levees of the Mitchell River. The<br>geomorphic setting of these regional<br>ecosystems ecosystems provides a fire refugia<br>(6.2.1) which supports the formation of a very<br>rare rainforest ecosystem (5.2.1) which has a<br>range of habitat resources not evident in the rest<br>of the landscape and an 'of concern' biodiversity<br>status. It supports locally uncommon and<br>unique combinations of species within its plant<br>community including Celtis paniculata,<br>Terminalia platyphylla, Eucalyptus<br>camaldulensis, Thryptomene oligandra,<br>Canarium australianum, Parinari nonda and | 5.2.1<br>6.2.1<br>6.3.1 | 3<br>4<br>4     | gi_r_fl_01<br>ml_r_fl_02<br>sn_r_fl_01 |

| Special Feature<br>Name |                                                                            | Study Area | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | СІМ | Cons.<br>Rating | Special<br>Feature ID |
|-------------------------|----------------------------------------------------------------------------|------------|----|----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|-----------------------|
|                         | Kovanytma                                                                  |            |    |    |    | Acacia spp. A variable shrub layer commonly<br>occurs, including Margaritaria dubium-traceyi,<br>Antidesma parvifolium and Syzygium<br>eucalyptoides. Many of the rainforest species<br>are fruit bearing and support frugivorous birds.<br>The dense physiognomy and closed canopy<br>vegetation provides important sites for feeding<br>and movement of birds, fish and reptiles and a<br>provincial refuge (6.3.1) for flora and fauna,<br>particularly dense cover dependent species. |     |                 |                       |
|                         | Dramdoff<br>Highioury<br>Builimba<br>Ravonsworth<br>Ravonsworth<br>Byorley |            |    |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                 |                       |

| Special Feature<br>Name                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Study Area | fa | fl | ес | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | СІМ                              | Cons.<br>Rating | Special<br>Feature ID |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------|-----------------------|
| Wetland aggregation<br>on upper Crosby<br>floodplain | Stratumu   Bratiselavan     Bratiselavan   Distr     Bratiselavan   Distr | Mitchell   | Y  | Y  | Y  | This floodplain wetland aggregation is part of an alluvial valley which hosts the most upstream permanent waterholes in the Crosbie Creek subcatchment of the Alice River. The primary significance of the area is associated with the size and permanence of the riverine and non-riverine wetlands within a highly seasonal sub basin with Horseshoe Lagoon the best example (Jeff Shellberg pers. comm.). The area's values have been identified by a number of recent field investigations (6.3.3) (Shellberg 2014; Shellberg et al. 2014, 2015). It includes a rich array of meandering and anabranching channels, off-channel lagoons (billabongs and oxbows), elliptical or elongate swamps, tributary creeks, and other interconnected complex habitat within inter-bedded alluvial sediments. They are frequently inundated by floodwater each wet season. There is a high diversity of aquatic plants around floodplain wetlands and the areas supports a number of 'Of Concern' wetland associated Regional Ecosystems (5.2.1) including RE 3.3.45: <i>Eucalyptus chlorophylla +/-Melaleuca viridiflora</i> low open woodland on Mitchell River floodplain and RE 3.3.66a: Permanent wetlands vegetated with <i>Eleocharis spp. Nymphaea spp. and Nymphoides spp. +/-</i> fringing open-forests of <i>Melaleuca spp.</i> Lacustrine wetlands are commonly fringed by an open sedgeland dominated by <i>Lepironia articulata.</i> Perennial aquatic refugia (6.3.1) (6.3.4) are comprised of off channel lagoons and channel hosted pools and support a high species richness of fish including species at their extralimital range, e.g. delicate blue-eye <i>Pseudomugil tenellus</i> and threadfin rainbowfish <i>lriatherina werneri</i> the latter expressing unique phenotypes (Shellberg 2014; Shellberg et al. 2014, 2015). Sixteen species of fish and three crustacean species have been identified including tiger crab <i>Austrothelphusa tigrina</i> which represents a range extension for this endemic species. Wildlife fauna associated with | 5.2.1<br>6.3.1<br>6.3.3<br>6.3.4 | 4 4 3 3         | ml_r_ec_02            |

| Special Feature<br>Name                                          |                                                                                                  | Study Area | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | СІМ                              | Cons.<br>Rating | Special<br>Feature ID |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------|----|----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------|-----------------------|
|                                                                  |                                                                                                  |            |    |    |    | the Crosbie floodplains is also diverse and<br>includes eighty-one species of birds, five<br>mammal species, six reptile species and seven<br>amphibian species. The importance of the<br>wetlands as a focal point for bird fauna and<br>amphibians has also been noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                 |                       |
| Wetland aggregation<br>on Eight Mile Creek,<br>Crosby floodplain | Stratman   Oran Gurhand     Diran   Diran     Bission   Jimise     King Janesion   King Janesion | Mitchell   | Y  | Y  | Y  | This floodplain wetland aggregation occurs on<br>the floodplain of Eight Mile Creek immediately<br>upstream of the confluence of Crosbie Creek<br>both of which are subcatchments of Alice River.<br>The aggregation occurs on an alluvial floodplain<br>and abuts sand sheets derived from a<br>weathered Holroyd Plain surface into which<br>connected wetland depressions extend. The<br>primary significance of the area is associated<br>with the size and permanence of the riverine<br>and non-riverine wetlands within a highly<br>seasonal sub basin (Jeff Shellberg pers.<br>comm.). The wetlands include meandering and<br>anabranching riverine channels, off-channel<br>lagoons (billabongs and oxbows), elliptical or<br>elongate swamps, tributary creeks, large<br>seasonal lakes within sandy depressions and<br>other interconnected complex habitat within<br>inter-bedded alluvial sediments. Most are<br>inundated by floodwater each wet season and<br>elevated flood flows also contribute to the<br>recharge of sand sheet aquifers (6.4.1)<br>supplying large seasonal swamps in connected<br>sandy depressions. There is a high diversity of<br>aquatic plants around floodplain wetlands and<br>the areas supports a number of 'Of Concern'<br>wetland associated Regional Ecosystems<br>(5.2.1) including RE 3.3.41: <i>Melaleuca clarksonii</i><br>low open forest in swamps and RE 3.3.66a:<br>Permanent wetlands vegetated with <i>Eleocharis</i><br><i>spp. Nymphaea spp. and Nymphoides spp.</i> +/-<br>fringing open-forests of Melaleuca spp.<br>Lacustrine wetlands are commonly fringed by an<br>open sedgeland dominated by <i>Lepironia</i><br><i>articulata</i> . Perennial aquatic refugia (6.3.1)<br>(6.3.4) are comprised of off channel lagoons and | 5.2.1<br>6.3.1<br>6.3.3<br>6.3.4 | 4<br>3<br>3     | ml_r_ec_03            |

| Special Feature<br>Name                                   |                                                | Study Area | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | СІМ                              | Cons.<br>Rating | Special<br>Feature ID |
|-----------------------------------------------------------|------------------------------------------------|------------|----|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------|-----------------------|
|                                                           |                                                |            |    |    |    | channel hosted pools and support a high<br>species richness of fish. The importance of the<br>wetlands as a focal point for bird fauna and<br>amphibians has also been noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                 |                       |
| Spring fed base flows<br>on Western Yalanji<br>sandstones | Pairingst<br>Pairingst<br>Pairingst<br>Maytown | Mitchell   | Y  | Y  | Y  | Spring fed base flows, Western Yalanji<br>sandstones. Bioregional boundary confluence of<br>values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.1.1<br>6.2.1<br>6.3.1<br>6.3.4 | 4<br>4<br>3     | ml_r_ec_05            |
| Walsh Gorge deep<br>waterholes                            | Valsin River                                   | Mitchell   | Y  |    | Y  | Deep waterholes in the Walsh gorge. The<br>unique geomorphic feature of the gorge reach of<br>the Walsh River (6.1.1) constrains high flows<br>within the river channel and has created deep<br>scour holes. These deep gorge holes are<br>perennial and act as contemporary aquatic<br>refugia (6.3.1) for obligate freshwater biota and<br>will also potentially gain importance in the future<br>under the spectre of increased rainfall variability<br>due to climate (6.3.4). The gorge reach of the<br>Walsh River has also been recognised for<br>broader biodiversity conservation values in<br>regional bioregional planning studies (6.3.3). | 6.1.1<br>6.3.1<br>6.3.3<br>6.3.4 | 4 4 4 4         | ml_r_ec_11            |

| Special Feature<br>Name                                                                  |                                                                                            | Study Area | fa | fl | ес | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | СІМ                                       | Cons.<br>Rating  | Special<br>Feature ID |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------|----|----|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------|-----------------------|
| Elizabeth Creek                                                                          | Multiple Groganville   Belleve Multiple   Wetter Multiple   Blaskdown Roskword   Mittingen | Mitchell   | Y  | Y  | Y  | Deep waterholes, refugia, contains dry rainforest<br>partly protected by fire and supported by water.<br>Good catchment integrity. Sandstones have<br>series of spring fed non riverine wetlands.<br>Elizabeth Creek is a tributary of the lower Walsh<br>River. Its mid catchment runs through incised<br>sandstone uplands (6.1.1).which have good<br>catchment integrity and a series of springs<br>which support nonriverine wetlands and other<br>groundwater dependent vegetation and riverine<br>ecosystem features (6.4.1). Main channel<br>reaches also support deep refugial (6.3.1)<br>waterholes and provide fire refugia which<br>contains dry rainforest also supported by water<br>availability. A specific spring flora suite of<br>species occurs. Perennial water within sandy<br>channel reaches has also supported the<br>development of an unusually tall (e.g. 25m)<br>community of <i>Melaleuca leucodendron</i> forest<br>(6.2.1). The springs have not been mapped but<br>are concentrated in the west of the riverine<br>spatial unit. The refugia roles of this riverine<br>wetland system are likely to increase in<br>importance under future more variable rainfall<br>patters driven by climate change (6.3.4). | 6.1.1<br>6.2.1<br>6.3.1<br>6.3.4<br>6.4.1 | 4 4 4 4 4        | ml_r_ec_12            |
| Major Groundwater<br>Baseflow Reach<br>Mitchell Falls to<br>Walsh and Lynd<br>confluence | Camboo is<br>Batimis                                                                       | Mitchell   | Y  |    | Y  | Although the Mitchell River's perenniality can be<br>attributed to high rainfall in the headwaters<br>during the wet season and year round discharge<br>from both local and regional aquifers (CSIRO<br>2009), studies tracing groundwater<br>geochemistry have indicated that reaches within<br>the central basin receive up to 40% of total<br>groundwater discharges (Battle-Aguilar et al.<br>2014). Groundwater is supplied primarily from<br>the Gilbert River formation and enters the river<br>from the Mitchell River falls downstream to the<br>Walsh and then Lynd confluences (CSIRO<br>2009). This groundwater connectivity with the<br>Gilbert River formation is a distinct geomorphic<br>feature (6.1.1) and hydrologic regime (6.4.1). It<br>supports perennial aquatic habitats that are<br>important contemporary aquatic refugia (6.3.1)                                                                                                                                                                                                                                                                                                                                                                                   | 6.1.1<br>6.3.1<br>6.3.4<br>6.4.1          | 4<br>4<br>4<br>4 | ml_r_ec_13            |

| Special Feature<br>Name                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Study Area | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | СІМ                                                         | Cons.<br>Rating            | Special<br>Feature ID |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------|-----------------------|
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |    |    |    | for obligate aquatic biota including species of<br>conservation interest such as freshwater sawfish<br><i>Pristis pristis</i> . Permanent water and associated<br>riparian communities are also important habitat<br>resources for terrestrial wildlife. The refugia<br>supported by these groundwater supplemented<br>reaches will also have increasing importance<br>during periods of extreme low rainfall predicted<br>under climate change (6.3.4).                                                                                                                                                                                                                                                                                                                                                                                         |                                                             |                            |                       |
| Spring-fed riverine<br>wetlands and<br>recharge areas at<br>Kimba                                    | Smithgondon Bamboo Alsw Samboo<br>Violet Vale<br>Strainmay Clan Ouriam<br>Potniam<br>Potniam<br>Potniam<br>Potniam<br>Horassing<br>Horassing<br>Liggon<br>Kaingu<br>Kaingu<br>Kaingu<br>Kaingu<br>Kaingu<br>Kaingu<br>Kaingu<br>Kaingu<br>Kaingu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mitchell   | Y  | Y  | Y  | Spring-fed riverine wetlands, some of which are<br>on the edges of Tertiary surfaces, support plant<br>species of conservation significance, regional<br>ecosystems of conservation significance and<br>ecological function. Ecological functions include<br>refugial areas, critical habitat for plants and key<br>resources for birds, frogs and reptiles (Lyon &<br>Franklin 2009; Shellberg et al. 2015).                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.1.1<br>6.3.1<br>6.4.1                                     | 4<br>3<br>3                | ml_r_ec_14            |
| Wet Tropics<br>rainforests and<br>associated riverine<br>habitats across the<br>upper Mitchell basin | Martovn<br>Maidand<br>Down<br>Groganvills<br>Nyshum Mulingan<br>Nyshum Mulingan<br>Nyshum Mulingan<br>Nyshum Mulingan<br>Nyshum Mulingan<br>Nyshum Mulingan<br>Mount Mulingan<br>Mount Mulingan<br>Mount Mulingan<br>Mutasida<br>Ordony o<br>Groganvills<br>Nyshum Mulingan<br>Mutasida<br>Ordony o<br>Griffithan Allihan<br>Colgintra<br>Rotensing Mulingan<br>Mutasida<br>Ordony o<br>Mutasida<br>Ordony o<br>Mutasida<br>Mutasida<br>Ordony o<br>Mutasida<br>Ordony o<br>Mutasida<br>Ordony o<br>Mutasida<br>Mutasida<br>Mutasida<br>Ordony o<br>Mutasida<br>Mutasida<br>Mutasida<br>Ordony o<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Ordony o<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida<br>Mutasida | Mitchell   | Y  | Y  | Y  | The Mitchell is the most bioregionally diverse<br>basin in the eastern Gulf and is unique within all<br>Gulf River basins in having areas of its upper<br>catchment fall within the Wet Tropics Bioregion.<br>Each of the sub basins of the upper Mitchel<br>drain three different Wet Tropics Provinces<br>including the Palmer which drains the Daintree<br>Bloomfield Province, the Upper Mitchel which<br>drains both the Daintree-Bloomfield and the<br>Macalister Provinces and the Walsh which<br>drains the Atherton Province. These areas are<br>fully representative of the Wet Tropics and<br>include extremely high and seasonally<br>distributed rainfall, cool high (6.1.1) altitude<br>mountains and tropical rainforest vegetation.<br>This combination of biophysical features within a<br>Gulf drainage basin generates unique | 5.2.1<br>6.1.1<br>6.2.1<br>6.3.1<br>6.3.3<br>6.3.4<br>6.4.1 | 4<br>4<br>4<br>4<br>4<br>4 | ml_r_ec_16            |

| Special Feature<br>Name | Study Area | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | СІМ | Cons.<br>Rating | Special<br>Feature ID |
|-------------------------|------------|----|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|-----------------------|
|                         |            |    |    |    | hydrological conditions (6.2.1) and associated<br>riverine (and some unmapped non riverine)<br>wetland habitats, communities and values. High<br>elevation areas receive regular rainfall often via<br>cloud capture, which sustains perennial riverine<br>habitats often via direct rainfall run off (6.4.1)<br>rather than groundwater contributions alone<br>which is associated with perennial streams<br>elsewhere in the eastern Gulf. Cool water<br>temperatures associated with high altitude<br>(>700m) areas support habitats rich in<br>bryophytes and mosses and endemic fauna<br>including a large spiny crayfish Euastacus<br>fleckeri restricted within the Mitchell Basin to<br>areas draining Mt Windsor and the Hann<br>Tableland in the adjoining Einasleigh Uplands<br>Bioregion (Ryan et al. 2002). An area also<br>vegetated by Wet Tropics rainforest regional<br>ecosystem. The potential for additional<br>Euastacus species to be discovered elsewhere<br>in these upland rainforest catchments is high.<br>Numerous frog species including at least nine<br>that are listed as threatened (6.3.1) also<br>characterise the fauna of the Wet Tropics upper<br>catchments of the Mitchell (Tait et al. 2015).<br>These high altitude areas also include flat<br>tablelands likely to host a number of unmapped<br>non-riverine wetland types including springs and<br>soaks associated with past alluvial deposits.<br>Another restricted crayfish species red tipped<br>yabby <i>Cherax wasselli</i> occupies mid altitude<br>uplands ranging from 500m adjoining Black<br>Mountain to 350m in the lower Rifle Creek<br>system adjoining Mt Carbine. This species<br>occurs more widely throughout adjoining eastern<br>drainages and is believed to be a natural<br>translocation (Ryan et al. 2002). Perennial flows<br>from these upland rainforest catchments sustain<br>perennial riverine habitat into lower altitude<br>reaches and contribute to downstream shallow<br>aquifer recharge (6.4.1) beyond the McLeod<br>River - Rifle Creek confluence in the upper<br>Mitchell (Hydrobiology 2005). These perennial |     |                 |                       |

| Special Feature<br>Name             |                                                                                 | Study Area          | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | СІМ                                       | Cons.<br>Rating  | Special<br>Feature ID    |
|-------------------------------------|---------------------------------------------------------------------------------|---------------------|----|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------|--------------------------|
|                                     |                                                                                 |                     |    |    |    | habitats act as refugia for aquatic species<br>(6.3.1) including fish and crustaceans more<br>typically associated with lower western reaches.<br>When hosted in Wet Tropics upper catchments<br>unique community types of Gulf basins species<br>juxtaposed within Wet Tropics habitats are<br>formed (Vallance & Hogan 2001, Ryan et al.<br>2002). Some of these perennial riverine reaches<br>are likely to provide important climate change<br>refugia in future years (6.3.4). Frontage<br>communities associated with these Wet Tropics<br>riverine reaches also include a large number of<br>'endangered' or 'of concern' regional<br>ecosystems (5.2.1), e.g. RE 7.3.23, RE 7.3.25,<br>RE 7.3.26, RE 7.3.28, RE 7.3.49, RE 7.11.42. In<br>many cases the threatened status of these<br>regional ecosystems is due to impacts<br>elsewhere within the Wet Tropics and the more<br>limited development pressure within the upper<br>Mitchell has thus far retained good examples of<br>them. Ongoing emerging development pressure<br>in these uplands of the Mitchell basin underpins<br>the need for recognition of the conservation<br>value of these wetland associated priority<br>ecosystems. |                                           |                  |                          |
| Priority refugia<br>freshwater fish | Kowanyanta<br>Kowanyanta<br>Karumura<br>Normanton<br>Normanton<br>Bount Supriso | Mitchell<br>Staaten | Y  |    | Y  | These 'Priority Refugia for Freshwater Fish'<br>(6.3.1) are based on those defined by Hermoso<br>et al. (2013) (6.3.3) for the Mitchell river basin<br>on the basis of water residency (6.4.1) assessed<br>by satellite imagery over multiple years and<br>considerations of fish community distribution<br>across the basin. Fish distribution was used to<br>prioritise candidate refugia by seeking to<br>maximise individual species representation<br>across the set of prioritised refugia. Individual<br>species vagility was also assessed and<br>incorporated in refugia selection by seeking to<br>maximise the length of stream area accessible<br>for colonisation (6.2.1) from refugia following<br>their isolation by extreme droughts including<br>those predicted to occur under future climate<br>change scenarios (6.3.4). Two sets of priority                                                                                                                                                                                                                                                                                                                                         | 6.2.1<br>6.3.1<br>6.3.3<br>6.3.4<br>6.4.1 | 3<br>4<br>4<br>3 | ml_r_ec_18<br>sn_r_ec_05 |

| Special Feature<br>Name       |                                                                                                                                       | Study Area          | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | СІМ                                       | Cons.<br>Rating | Special<br>Feature ID |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------|----|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------|-----------------------|
|                               | Dromsdiff                                                                                                                             |                     |    |    |    | refugia were nominated one using a baseline<br>catchment condition and another using current<br>conditions and projections of ecological<br>pressure that reduce the viability of some<br>candidate refugia. Both sets of prioritised refugia<br>intersected with riverine spatial units have been<br>conservatively used for this decision recognising<br>that not all projected condition pressures have<br>been realised and also that management<br>intervention may have the capacity to mitigate<br>them where they have been realised. Given the<br>use of remote sensing in the identification of<br>potential refugia some caution is needed in the<br>application of identified refugia values<br>recognising that artificial waterbodies including<br>dams may have contributed to satellite based<br>indications of water perenniality in the<br>landscape.                                                                                                                                                                                                                                |                                           |                 |                       |
| Fossil Brook and<br>Lynd area | Bulleringa<br>Subarra<br>Subarra<br>Subarra<br>Bulleringa<br>Subarra<br>Bulleringa<br>Subarra<br>Superior Subarra<br>Superior Subarra | Mitchell<br>Gilbert | Y  |    | Y  | This area was identified as being of State<br>significance in the Einasleigh Uplands<br>Biodiversity Planning Assessment (BPA)<br>(eiu_I_31):<br>Ib (wildlife refugia): VERY HIGH<br>Ie (high species richness): VERY HIGH<br>This area covers the wetlands, springfields and<br>spring-fed ecosystems associated with the<br>upper Lynd River and Fossil Brook. The<br>wetlands are fed by northern flows of Undara<br>Basalt, and flow in the main river channels is<br>permanent. The area includes key sooty grunter<br><i>Hephaestus fuliginosus</i> habitat, including<br>spawning habitat in the rapids, outstanding<br>freshwater crocodile <i>Crocodylus johnstoni</i><br>habitat and very high fish diversity. The area<br>includes an internationally significant reference<br>site for crocodilians. The area also has a very<br>high diversity of macropod species, and includes<br>the only known habitat for the skink<br><i>Proablepharus barrylyoni</i> . Enclosed pockets of<br>basalts and granites are included to consolidate<br>the area, increase connectivity and diversity of | 6.3.1<br>6.3.3<br>6.3.4<br>6.4.1<br>8.2.5 | 4 4 4 4 4       | ml_r_ec_19            |

| Special Feature<br>Name                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Study Area | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | СІМ                     | Cons.<br>Rating | Special<br>Feature ID |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|-----------------------|
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |    |    |    | ecosystem and species, and to increase the<br>integrity and viability of the area. A buffer of<br>500m was also used to ensure values<br>associated with the ecotone between the<br>wetlands and adjacent habitat were included,<br>and to further increase habitat representation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                 |                       |
| Riverine wetlands at<br>the confluence of the<br>Lynd and Tate rivers | Binstown<br>Rvenswork<br>Byrey<br>Byrey<br>Binsky<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byrey<br>Byre | Mitchell   | Y  | Y  | Y  | The confluence of the Lynd and Tate rivers<br>hosts juxtaposed riverine and non-riverine<br>wetland values. During high flows overbank<br>floodplain at the confluence of these rivers<br>generates large back plain swamps a unique<br>geomorphic feature (6.1.1). These support<br>palustrine wetlands RE 2.3.55c which are<br>unusual in terms of their floristic make up which<br>includes unique mixed communities of limited<br>extent representative of several adjoining<br>bioregions that converge on the area. Seasonal<br>swamps on these back plains are dominated by<br>a particularly tall (e.g.15m) and dense<br>physiognomy of Melaleuca viridiflora and/or <i>M.</i><br><i>clarksonii</i> woodland. The ground layer is<br>commonly spike rush Eleocharis spp. These<br>seasonal swamps retain moisture into the dry<br>season on account of their size providing a<br>refugial role (6.3.1) for dependent wildlife<br>including water birds which use them as<br>important feeding and moulting sites. On<br>elevated, stabilised terraces within the river<br>channels the best example of another limited<br>extent regional ecosystem RE 2.3.24c occurs.<br>This is a mixed woodland to open forest, with<br>rainforest elements and a denser canopy<br>structure afforded by the fire refugia (6.3.1)<br>function of the within channel terraces (6.3.1).<br>This community includes combinations of<br><i>Eucalyptus camaldulensis</i> and the rainforest<br>tree <i>Celtis paniculata</i> and several fruit bearing<br>trees including <i>Terminalia platyphylla</i> ,<br><i>Thryptomene oligandra</i> , <i>Canarium australianum</i> ,<br><i>Parinari nonda</i> , <i>Margaritaria dubium-traceyi</i> ,<br><i>Antidesma parvifolium and Syzygium</i> | 6.1.1<br>6.3.1<br>8.2.5 | 3<br>3<br>4     | ml_r_fl_01            |

| Special Feature<br>Name                        |                                                                                                                                                                                                                                            | Study Area | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | СІМ            | Cons.<br>Rating | Special<br>Feature ID |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|-----------------------|
|                                                |                                                                                                                                                                                                                                            |            |    |    |    | important to frugivorous birds and other wildlife<br>and the denser physiognomy of the vegetation<br>also provides habitat for cover dependent<br>species (6.3.1).                                                                                                                                                                                                                                                                                                                                                                  |                |                 |                       |
| Sandstone gorges                               | Templeton Idaia Langdon Green Hills<br>Mitagons Candlow<br>Prospect Citoroa<br>Prospect Citoroa<br>Prospect Citoroa<br>Prospect Citoroa<br>Pogo<br>Creation<br>Malpas Valian Strattipurk<br>Saxby Downs Etheldale<br>Mount Norman<br>Emore | Norman     | Y  | Y  | Y  | This special feature is a high gorge section in<br>the upper reaches of the Norman catchment that<br>uncharacteristically flow out of sandstone<br>springs. The area is thought to have similar<br>physical characteristics to the Cobbold Gorge<br>decision. The area is characterised by highly<br>dissected sandstone that supports unique<br>unstable wetlands. The area also has good<br>connectivity, contains permanent waterholes<br>with refugial values and refugial rainforest flora<br>species in riparian communities. | 6.1.1<br>6.3.1 | 4 4             | nn_r_ec_01            |
| Lagoons and ponded<br>area on 40 Mile<br>Creek | Warren Vale<br>Bang Bang<br>Wondoola<br>Wendoola                                                                                                                                                                                           | Norman     | Y  |    | Y  | The lagoons and ponded parts of the stream at<br>40 Mile have particular value for waterbirds and<br>fish in this vast dry landscape (Burrows & Perna<br>2006; Jaensch & Richardson 2013). 40 Mile,<br>which contains rock bars, forms a big lake in dry<br>season and a river channel in the wet.<br>Significant ecological values include refugia,<br>breeding habitat and sites, lateral and<br>longitudinal connectivity and feeding areas for<br>wildlife such as turtles and macroinvertebrates.                              | 6.3.1<br>6.3.4 | 4 4             | nn_r_ec_02            |

| Special Feature<br>Name     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Study Area | fa | fl | ec | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | СІМ                                                | Cons.<br>Rating       | Special<br>Feature ID |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------|-----------------------|
| Carron Forrest<br>country   | Karimba<br>Normanor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Norman     |    | Y  | Y  | The Carron Forrest country contains tiny<br>wetlands along coolibah flats. The area has<br>value as a large interconnected aggregation<br>rather than as individual wetlands. Overflow<br>from the Gilbert is associated with the back<br>swamps however on the sand surfaces, the<br>circular wetlands are groundwater recharged.<br>The wetland systems have significant diversity<br>and longevity and contain very thick vegetation<br>including melaleuca, swamp box ( <i>Lophostemon</i><br><i>suaveolens</i> ) and spear grass. The area is also<br>subject to flash flooding from the Gilbert River.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.2.1<br>6.4.1                                     | 33                    | nn_r_ec_03            |
| Staaten Wyaaba<br>Delta Fan | Durbar<br>In kerman<br>Doranba<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>Untearron<br>U | Staaten    | Y  | Y  | Y  | Similar to the Gilbert-Smithburne Delta Fan and<br>the Mitchell Holocene Delta, the Staaten-<br>Wyaaba Fan aggregation is a good though less<br>extensive example of a diverse and rich array of<br>alluvial plain wetlands and deep water habitats<br>which characterise the Mitchell-Gilbert Fan<br>province of the Gulf Plains bioregion (8.2.5). The<br>aggregation occurs across the most<br>hydrologically active part of the lower Staaten<br>Basin immediately downstream of the<br>confluences of the basins major sub<br>catchments. Downstream of this point flood<br>flows break out in multiple anastomosing<br>distributary channels across Pleistocene aged<br>floodplain surfaces before splaying and<br>diverging across the active younger Holocene<br>aged delta. Dinah Island formed by delta<br>anabranch channels lies within the active delta<br>and has developed scroll bars and oxbow<br>lagoon habitats formed from past channel<br>meanders. Floodplain overflow from the Mitchell<br>basin are also a critical water supply to the<br>aggregation (6.2.1). The sites includes a high<br>diversity of alluvial landform elements including;<br>closed depressions (lakes, oxbows, swamps),<br>and open depressions (drainage depression,<br>stream channel, stream bed, swamp) within a | 5.2.1<br>6.1.1<br>6.2.1<br>6.3.1<br>6.3.4<br>6.4.1 | 3<br>4<br>3<br>4<br>3 | sn_r_ec_01            |

| Special Feature<br>Name | Study Area | fa | fl | ес | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | СІМ | Cons.<br>Rating | Special<br>Feature ID |
|-------------------------|------------|----|----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|-----------------------|
|                         |            |    |    |    | flat upland comprising plains, fans, back plains<br>and floodouts. Flood inundation and flows are<br>integral to site values associated with its<br>dynamic geomorphological, hydrological and<br>ecological form and function. Its lower position in<br>the landscape means it is more frequently<br>inundated, connected and scoured by channel<br>outbreak flows than less active more elevated<br>floodplain areas (6.4.1). The geomorphic setting<br>forms shallow alluvial aquifers and deeper<br>channels and off river waterholes which both<br>support ecologically important aquatic refugia<br>(6.3.1) with potential importance as climate<br>change refuges (6.3.4). As described for the<br>Mitchell, flood inundation across this area would<br>provide a 'floodplain subsidy' to aquatic food<br>chains and fishery productivity within adjoining<br>riverine and downstream estuarine systems<br>(6.2.1) (Hunt et al. 2012; Jardine et al. 2012).<br>Wetlands within the aggregation function as<br>important breeding sites for aquatic species and<br>provide nursery habitat for fishery species<br>including barramundi <i>Lates calcarifer</i> (6.3.1).<br>Deep waterholes such as Old Dorunda<br>Crossing, Elvis Lagoon, Mentana and Lake<br>Condor have high fish species diversity (Hogan<br>et al. 2009). They also support breeding,<br>roosting, feeding and moulting habitats for a<br>diverse range of waterbirds. The friable silty<br>alluvium of the delta has a greater nutrient<br>status and moisture retaining capacity that older<br>finer floodplain soils and supports a host of<br>fringing wetland associated regional ecosystems<br>on fertile levees including some with 'of concern'<br>biodiversity status, e.g. many good examples of<br>RE 2.3.16 billabongs (abandoned channels) on<br>active Quaternary alluvial plains, fringed with<br><i>Eucalyptus</i> spp., <i>Corymbia</i> spp. and <i>Melaleuca</i><br>spp. (5.2.1). |     |                 |                       |

| Special Feature<br>Name                                                                 |       | Study Area | fa | fl | ес | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | СІМ                     | Cons.<br>Rating | Special<br>Feature ID |
|-----------------------------------------------------------------------------------------|-------|------------|----|----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|-----------------------|
| Spring fed riverine<br>systems at top of<br>catchment in<br>Bulleringa National<br>Park | Trust | Staaten    | Y  |    | Y  | Springs at top of catchment in Bulleringa<br>National Park. Spring fed riverine systems.<br>Refugia, perennial habitat, powerful springs with<br>a lot of water coming out. Important as a<br>resource to the local fauna, in good condition.<br>Dissected landscape. Hydrological values as a<br>discharge but also as a recharge. Bulleringa<br>National Park straddles the upper catchments of<br>both the Staaten and Mitchell (Lynd<br>subcatchment) basins. Within the upper Staaten<br>basin it includes at least five mapped active<br>spring heads that discharge strongly into the<br>uppermost catchment of the Red River within a<br>seasonally arid landscape. These springs<br>contribute to the maintenance of perennial pool<br>habitats within a riverine ecosystem that acts as<br>contemporary (6.3.1) and potential future (6.3.4)<br>aquatic refugia for obligate freshwater biota<br>including a resident freshwater fish community<br>(T. Vallance pers. comm.). They also provide<br>important habitat resources and watering points<br>for terrestrial fauna. Dissected landscape.<br>Although the principal hydrological values ae<br>associated with spring discharge the<br>surrounding dissected landscape also acts as a<br>groundwater recharge area (6.4.1). | 6.3.1<br>6.3.4<br>6.4.1 | 4 4 4           | sn_r_ec_03            |

<sup>1</sup>R — Riverine, NR — Non-riverine.

<sup>2</sup>Criteria, indicators and measures (used in AquaBAMM).

<sup>3</sup> Conservation rating between 1 (Low) and 4 (Very high).

# 6 Connectivity

Aquatic ecosystem connectivity refers to the connections between and within aquatic ecosystems. An appreciation of the connection of the wetland to other wetlands and to the broader catchment and landscape is important for effective management decisions (DEHP 2017).

The panel members were asked to develop and/or identify a set of principles that could be applied to determine relative connectivity scores for riverine and non-riverine wetlands within the Eastern Gulf of Carpentaria.

#### 6.1.1 Importance of connectivity

There was agreement by the panel that the concept of connectivity is important in the Gulf due to its direct or indirect link to most facets of aquatic ecology, geomorphology and water quality. The scientific literature reviewed for the AquaBAMM program reflects this view.

The ecological value of a particular river reach is directly linked, in quantity and quality, to the movement both up and downstream (and between adjoining terrestrial lands) of resources such as water, sediment and debris and recruitment and distribution of species (Cullen 2003).

An inherent connectivity (or lack of connectivity in drier periods) is a significant feature of riverine and non-riverine wetlands. For example, in arid-zone systems and floodplains, the irregular flow regime and sporadic connectivity underpins the conservation of the instream and floodplain wetland biota such as the invertebrate assemblages (Sheldon et al. 2002). Similarly, this relationship is evident for maintaining the health and productivity of end-of-river estuarine systems (Cullen 2003).

A largely unknown and unseen linkage occurs within the hyporheic zone between surface waters and groundwater ecosystems sustaining many endemic or relictual invertebrate fauna (Boulton et al. 2003).

## 6.1.2 Applying principles for measuring connectivity

The practicalities of measuring connectivity for aquatic environments are complex making general principles difficult to develop and implement. Connectivity in its broadest meaning incorporates hydrological processes (quantity and quality, temporal and spatial variability), organism dispersal (barriers) and disturbances from natural conditions. Connectivity can be bi-directional movements within a stream (e.g., fish passage), uni-directional contributions to downstream areas, or lateral connectivity between instream areas and non-riverine floodplain wetlands or groundwater ecosystems. These aspects of connectivity combine to provide a matrix of competing and differing values from an ecological conservation viewpoint.

The expert panel made the following comments regarding wetland connectivity across the study areas:

- a. In general, appropriate/pre-European connectivity remains high especial for the Mitchell and Staaten catchments.
- b. Connectivity varies between lowland, midland and upland regions. Lowlands a lot more connected than uplands, and connectivity likely to be more important there.
- c. Connectivity can occur at different temporal and spatial scales. To assess connectivity appropriately, the components of an ecosystem, and the processes affecting them, must be considered. Connective may vary between catchments resulting in the need for different connectivity rules for different catchments.
- d. The nature of overland flow is important (i.e. instream channel flow (in-channel longitudinal; in-channel lateral (overbank flow)).

#### 6.1.3 Fish passage — Measure 7.1.2

The principles for the fish passage connectivity rating (measure 7.1.2) developed by the riverine ecology expert panel from the Burnett River Aquatic Conservation Assessment (Clayton et al. 2006) were tabled at the wetland ecology expert panel workshop.

Under this methodology, the assumption is that barriers lower in the catchment have more impact on fish passage then those in upper reaches of the catchment. There is also recognition that each barrier can be rated according to its relative level of fish passage. For more information on the fish passage connectivity implemented in the Burnett River Aquatic Conservation Assessment see the Burnett River Aquatic Conservation Assessment Report (Clayton et al. 2006).

After consideration of the aforementioned methodology, the wetland ecology panel determined that this method was not sufficient enough for implementation within the Eastern Gulf of Carpentaria. It was identified at the panel that the Eastern Gulf of Carpentaria region is subject to significantly high levels of connectivity — laterally, longitudinally and cross-catchment — on a regular basis and that there are few barriers to fish passage present in

the study area.

The panel discussed alternative methods for determining riverine connectivity (and hence fish passage) in the Eastern Gulf of Carpentaria. The panel suggested that all special features identified by the panel as supporting fish passage be assigned a conservation rating of 3 or 4 for measure 7.1.2.

#### 6.1.4 Connectivity between freshwater wetlands and groundwater - Measure 7.2.1

Connectivity between freshwater wetlands (riverine and non-riverine) and groundwater (measure 7.2.1) was recognised by the panel as being particularly important in the Eastern Gulf of Carpentaria with much of the region being under the influence of groundwater. The panel members discussed several methods for assessing the connectivity of freshwater and groundwater systems and agreed that anything that is connected hydrologically and/or biologically to groundwater areas should be given a higher connectivity rating.

The panel discussed alternative methods for determining connectivity between freshwater wetlands and groundwater systems in the Eastern Gulf of Carpentaria. The panel suggested that all special features identified by the panel as being connected to groundwater (e.g. discharge areas and spring fed systems) be assigned to a conservation rating of 3 or 4 for measure 7.2.1.

# 6.1.5 Contribution of the spatial unit to the maintenance of estuarine and marine ecosystems with significant biodiversity values - Measure 7.5.1

Connectivity between freshwater wetlands (riverine and non-riverine) and estuarine ecosystems was also recognised by the panel as being important (measures 7.5.1 and 7.5.2). The panel members discussed several methods for assessing the lateral connectivity of freshwater and estuarine wetlands and agreed that anything that is connected hydrologically and/or biologically to estuarine areas could be given a high connectivity rating.

The panel discussed alternative methods for determining the contribution of the spatial unit to the maintenance of estuarine and marine ecosystems with significant biodiversity values. The panel suggested that all special features identified by the panel as contributing to the maintenance of estuarine and marine ecosystems with significant biodiversity values being connected to groundwater (e.g. discharge areas and spring fed systems) be assigned a conservation rating of 3 or 4 for measure 7.5.1.

# 7 Stratification

Study area stratification attempts to mitigate the effect of data averaging across large study areas. Stratification is particularly useful when ecological diversity and complexity is high. For example, an example where stratification may be appropriate is when fewer native fish species (i.e. AquaBAMM measure 3.1.2 (Richness of native fish)) inhabit upland zones compared to lowland floodplains. Stratification is unwarranted for measures where there is an equal probability of species throughout the study area.

Study area stratification is a user decision and is not mandatory for a successful assessment. AquaBAMM makes provision for one or more measures to be stratified in any manner determined to be ecologically appropriate. Decisions concerning which measures to stratify are typically considered by the expert panel. To date, assessments have been stratified based on elevation (e.g. 150m ASL for coastal catchments and 400 m ASL for catchments west of the Great Dividing Range in the Murray-Darling Basin) or bioregional boundaries.

The Eastern Gulf of Carpentaria expert panel recommended stratification based on elevation resulting in the segmentation of the study areas into upland and lowland regions. A delineation somehwere between 150 - 200m ASL was recommended; the 175m ALS contour was used. Subsections were assigned to each stratum based on a 'majority' rule (i.e. subsections were assigned the stratum containing the majority of the subsection).

## 8 Springs

A distinct hydrological component of the study areas are the deep artesian groundwater systems operating almost entirely independent of shallower surface water alluvial aquifers. Artesian water emanating from these result in numerous spring systems displaying unique geomorphic appearances and specialised habitats of high intrinsic conservation value (Fensham & Fairfax 2003; Fensham et al. 2007).

Springs wetlands were not assessed as part of the Eastern Gulf of Carpentaria assessments. The expert panel expressed concern with this highlighting the critical need for information on the conservation values of springs for water and land use planning.

In the absence of an Aquatic Conservation Assessment for spring wetlands, the reader is referred to the Queensland spring database published by the Queensland Herbarium (https://data.qld.gov.au/dataset/queensland-spring-database). This database provides comprehensive data on the condition, threats and biodiversity values associated with springs within the database. The database also includes a conservation priority rating for springs within the Great Artesian Basin. These ratings were developed by Fensham and Fairfax (2005) and are based on the following criteria:

- a. Category 1a: These spring wetlands provide habitat for biota endemic to one spring complex.
- b. Category 1b: These spring wetlands provide habitat for biota endemic to more than one spring complex.
- c. Category 1c: These spring wetlands provide habitat for species listed under State or Commonwealth legislation (except *Callistemon* sp. Boulia (L. Pedley 5297) which is listed as vulnerable under the EPBC and has since been identified as the common species *C. viminalis*).
- d. Category 2: These spring wetlands provide habitat for some isolated populations of plant species, or are outstanding examples of their type.
- e. Category 3: Any spring of lower value than above that is relatively intact.
- f. Category 4: Severely degraded by any threatening processes.

The EGoC assessments assigned value to non-riverine spatial units containing springs under Criterion 6 (Special and Unique Values). Conservation value ratings were assigned to measures 6.3.1, 6.3.4 and 7.2.1 based on based on the conservation rating developed by Fensham and Fairfax (2005) and Fensham et al. (2006). For example, non-riverine spatial units intersection springs with a Fensham et al. (2006) conservation rating of 1a, 1b, 1c or 2 were given a conservation value rating of 4 for measures 6.3.1, 6.3.4 and 7.2.1. Non-riverine spatial units intersection springs with a Fensham et al. (2006) conservation rating of 1a, 1b, 1c or 2 were given a conservation value rating of 4 for measures 6.3.1, 6.3.4 and 7.2.1.

The EGoC assessments used the conservation priority ratings from the Queensland spring database to assign value to any non-riverine spatial units containing springs. This was implemented utilising criterion 6 (special features). See the accompanying expert panel report for more details.

# 9 Discussion

## 9.1 Ecology

## 9.1.1 Pattern

The Eastern Gulf of Carpentaria region can be broadly split into upland and lowland areas, each with a distinct array of freshwater wetlands. Across the middle and lower reaches, anastomosing channels are interspersed with floodplain waterholes while in the upper sections include more well-defined watercourses, springs or spring-fed wetlands and subterranean systems. Spring waters may come from the Great Artesian Basin or from deeper more local aquifers and the cave waterways may form in either extinct basaltic lava flows or limestone karsts.

The physical appearance of the wetlands can vary between study areas. Surface waters in the Flinders and the Norman that drain extensive cracking clay plains are typically turbid and ephemeral (Burrows & Perna 2006; Waltham et al. 2013). Those of the more northern catchments (Gilbert, Staaten and Mitchell) flow through largely sandy soils and are clear with perennial or seasonally intermittent flows (Waltham et al. 2013).

While all the surface wetlands across the region experience a similar seasonality with flows during the wet season followed by a gradual drying out until the next wet, the character of this pattern varies from catchment to catchment. In the south (Flinders) with its lower rainfall and limited connectivity to groundwater sources, the drying results in a series of unconnected deep waterholes both instream and offstream. Generally the number of no flow days in the Flinders is highest of all the catchments. The more northern study areas, particularly the Gilbert and Mitchell, have a combination of intermittent and perennial watercourses with a high diversity of lowland permanent deepwater channels and lagoons (Tait et al. 2015). Permanent flows and persistent waterholes are maintained through groundwater intrusions, e.g. from the Palmer recharge zone and Gilbert River Formation aquifer (Hogan & Vallance 2011; Tait et al. 2015). Even in what appear to be stretches of dry sands separating waterholes then can be flows through saturated sediments below and beyond the banks (the hyporheic zone) (Ecowise Environmental 2007).

While all study areas have similar within year predictability they can vary considerably between years in terms of number of no flow days, duration and extent of flow days and overall discharge volume. Seasonal inundation can last from several days to weeks and occur in one or more episodes during the wet.

Overall wetlands in the study areas are in a good state with the Staaten ranked most undisturbed while the remaining study areas exhibit medium levels of river disturbance (Stein et al. 2002). Recent work in the Staaten (Hogan et al. 2009) revealed a catchment in very good condition that supports earlier assessments (e.g. Stein et al. 2002) that underpinned the past declaration of the Staaten as a wild river (Queensland Government 2007). The ecology panel recognised the catchment as being a good example of an undisturbed area, retaining refugial values in an otherwise disturbed landscape. In all study areas, water quality and general habitat condition is considered good/healthy (Vallance et al. 2000; Ryan et al. 2002; Hogan & Vallance 2005, 2012; Burrows & Perna 2006; Ecowise Environmental 2007; Hogan et al. 2009; Kerezsy & Ebner 2016).

## 9.1.2 Process

Wetlands in the study areas are exceptionally dynamic with the size, shape and flows changing dramatically, but with a certain degree of predictability, over the course of a year. The seasonal changes in the distribution of water across the landscape is accompanied by changes in the water quality. Within the intermittent wetlands, as they shrink during the dry there is a decline in dissolved oxygen levels and an increase in conductivity (indicator of salinity). These harsher conditions result in changes in both plant and animal community composition. Even in perennial wetlands there can be similar changes in water chemistry due to an increasing contribution of groundwater that can be low in oxygen and higher in salinity values that may contribute to occasional fish kills in the region (Hogan & Vallance 2011). Reduced oxygen may also result from the decay of dead terrestrial and aquatic vegetation washed into waterways during floods (Ecowise Environmental 2009).

Despite some deterioration of conditions during the dry season, the remaining waterholes are critical refugia (Waltham et al. 2013; McJannet et al. 2014) providing a source of aquatic plants and animals. Barring any other disturbance, wet season floods can effectively reset the system, flushing out nutrients, reducing turbidity and enabling the dispersal and regrowth of plants such as floating macrophytes (Pettit et al. 2012) and animals, e.g. larval fish across the landscape from these source refuges.

Wet season flooding also impacts on terrestrial environment. Prolonged inundation of up to eight weeks (Ecowise Environmental 2009) can result in a die off of ground and shrub layers which has significant consequences on the non-aquatic flora and fauna of the region (e.g. Preece & Franklin 2013). Such wet droughts with a loss of forage for an extended period of time can severely affect cattle properties. In other cases, inundation reinvigorates the grasslands and occasionally the algal mats lefts after the waters recede provide valuable nutrients for the soil

(Hogan & Vallance 2012). Discharges associated with flooding are critical in sustaining the productivity of various marine fisheries in the Gulf of Carpentaria (Halliday et al. 2012).

The ecology panel highlighted the fact that connectivity is a prominent feature of the EGoC region. Within catchments there are not only the continuous links from sea to source and channel to floodplain that can occur in the wet, but also that between sub-surface and surface waters either via aquifers or as saturated sediment flows in channels during the wet and dry. Between catchment connectivity can also happen. In fact a north to south relationship is possible starting from the Barron River (east of Great Dividing Range) that provides water through irrigation canals to the upper Mitchell, flood overflows from the Mitchell/Lynd can move in the Staaten as does excess from the Gilbert. Waters from the Gilbert can also enter the Norman via Walker Creek and Six Mile Creek, while the Norman and Flinders are occasionally linked through flooding of Spear Creek.

## 9.2 Flora

Apart from broad descriptions of wetland vegetation composition and structure very few studies undertaken in the EGoC region have detailed wetland plant inventories. Riparian vegetation in the study region consists primarily of woodlands or open forests of coolibah *Eucalyptus microtheca* or river red gum *E. camaldulensis* and occasionally blue gum *E. tereticornis*, or *Melaleuca* spp. (*M. viridiflora, M. dealbata, M. leucadendra, M. argentea*) (Tait et al. 2015). In terms of aquatic plants details are even less specific with references made to water lilies (e.g. *Nymphaea* spp., *Nymphoides* spp.) or sedges (e.g. *Eleocharis* spp., *Cyperus* spp.). Pettit et al. (2012) lists macrophyte taxa for various individual waterholes but the assessment was restricted to the lower Mitchell. Some inter-study area differences in aquatic vegetation are evident with an absence of submerged macrophytes in many Flinders waterholes due to their persistently turbid nature (Waltham et al. 2013).

During the panel several issues were raised relating to flora and wetlands in general. One is the challenge in determining the boundary between estuarine and freshwater systems. Another is the fact that floodplains in the region are ecologically wetland areas but are not mapped as such. Consequently, should those species that grow on floodplains being considered "wetland" taxa? The panel also considered climate change a small issue for most EGoC plants which are already adapted to climate extremes and major shifts in climatic conditions throughout the year.

## 9.3 Fauna

The vertebrate fauna of wetlands within the study areas is relatively well known. Waterbirds aggregate in large numbers, feeding and/or breeding in both flooded areas (wet season) and waterholes (dry season) across the lowland floodplains (Blackman et al. 1999; Dutson et al. 2009). As part of the East Asian-Australasian Flyway, the gulf is a gateway to Australia for thousands of migratory waders (Bamford et al. 2008; Jaensch and Richardson 2014). The wetlands, including the freshwater ones on the extensive floodplains are of major importance providing feeding habitat, either over-wintering or replenishment before heading further south. Recent surveys have focussed on the freshwater fish communities and diversity in the study areas is high (41 - 57 taxa; Hogan & Vallance 2011; Tait et al. 2015) compared to elsewhere in northern Australia (Kennard 2011), and is likely to increase as new taxa are found, e.g. *Porochilus* spp. in Flinders and Gilbert (Hogan & Vallance 2011). Within individual waterholes Hogan & Vallance (2005) found that fish diversity increased with the size of the waterbody and the abundance of food, e.g. freshwater prawns. Generally fish diversity decreases with distance upstream. Burrows (2004) described the fish fauna as being biogeographically and evolutionary distinct and this is borne out by the richness and the unique composition with a mixture of widespread, endemic, edge of range (particularly of CYP) fish and taxa with highly disjunct populations being represented within the study region.

Macroinvertebrates of instream and floodplain wetlands have also received recent attention (e.g. Leigh 2013; Waltham et al. 2013), but our knowledge is still minor compared to the region's vertebrates. For the invertebrates in springs, subterranean caves (stygofauna) and sub-surface saturation zone (hyporheic fauna) data is minimal to non-existent. The hyporheic zone is considered critical for the dry season survival of instream macroinvertebrates (Ecowise Environmental 2007). This is a major gap considering that such unique environments often contain endemic or undescribed taxa (Fensham & Fairfax 2005; Negus et al. 2013), and these wetland systems play a significant role in the aquatic dynamics of the region, e.g. maintaining base flows during dry season in upper catchments.

The fauna communities of the study region are generally considered to be in good condition. This is in part due to their current exposure to natural flows and the retention of high levels of connectivity within channels and between channels and floodplain wetlands. Apart from the Glenore Weir on the Norman, water infrastructure that acts as fish barriers are absent from most of the river systems and so have minimal impact on the movement of adults (e.g. taxa that migrate either between fresh and salt water or up and downstream to complete their breeding cycle) and offspring (dispersal from breeding areas into preferred habitats) (B. Ebner - EP). Tagged barramundi *Lates calcarifer* have been recorded traversing 360km of Flinders River in less than a year (Hogan & Vallance 2005).

Similarly the natural variability in flow is important, favouring low-flow spawners at some times of the year and high-flow spawners during floods.

## 9.4 Threats

#### 9.4.1 Current

The major threats common to wetlands in all the study areas are pigs, weeds and grazing (Tait et al. 2015). Pig activity includes rooting that disturbs riparian habitat, fouling of waterholes and predation on native animals, especially nests of turtles (Fordham et al. 2006). Degradation increases over the course of the dry season as herbivores feral and domestic concentrate around waterholes (Pettit et al. 2012).

Degradation of riparian vegetation can enable the establishment of weed species such as rubbervine *Cryptostegia grandiflora*, parkinsonia *Parkinsonia aculeata* and prickly acacia *Vachellia nilotica*. Rubbervine not only results in a destabilisation of the riparian zone it can also directly affect the fauna in lagoons and low flow sections due to the water soluble poisons that can leach from any plant material that falls into the water (Ryan et al. 2002). At present aquatic weed infestations are low with water hyacinth *Eichhornia crassipes* in the lower Mitchell and Smithburne part of the Gilbert (Ryan et al. 2002; Hogan & Vallance 2011), and hymenachne *Hymenachne amplexicaulis*, salvinia *Salvinia caroliniana* and water lettuce *Pistia stratiotes* in the upper Mitchell in the MDIA (Walsh River) and upstream of Mount Carbine (Mitchell River) (Ryan et al. 2002; Tait et al. 2015).

Cattle grazing is the dominant and widespread landuse of the region (Tait et al. 2015). A consequence of this activity is the decline in water quality and biota of waterholes and the degradation of the riparian zone leading to alluvial gully erosion. Such erosion can result in increased sediment/turbidity and nutrients, infilling of riverine waterholes and channels and exposing more terrestrial areas to possible weed invasion (Shellberg & Brooks 2012).

EGoC is largely free of exotic fish. Established feral fish populations of guppy *Poecilia reticulata* are confined to the upper reaches of the Walsh in the MDIA (Vallance et al. 2000, Ryan et al. 2002) while disturbingly there have been occasional captures of tilapia *Oreochromis mossambicus* in the same area (Pearce et al. 2009). The latter are major predators with established populations in Lake Tinaroo which is a water source for the MDIA. Cane toads *Rhinella marina* are ubiquitous in the region but their impact on native predators is uneven, e.g. healthy populations of freshwater crocodiles *Crocodylus johnstonii* are present in the Staaten (Hogan et al. 2009) but elsewhere there has been a significant decline in Merten's water monitor *Varanus mertensi*.

## 9.4.2 Potential

Future threats to the wetlands in study region are water extraction, climate change and exotic plants and animals.

As most rivers in northern Australia have very little water infrastructure, the impacts of any development have not been observed. Consequently, any assessment of the likely outcomes is based on southern examples and an understanding of the relationships between the water dynamics of the region and its biota. Potential adverse effects of water extraction (surface and/or groundwater) include:

Reduced flow (volume and duration) resulting in downstream impacts:

- a. Decreased size and persistence of waterholes, especially by late dry, and associated decline in water quality (lower oxygen level and raised conductivity through evaporation and proportional increase in groundwater input); increased sedimentation of waterholes; shift from perennial to intermittent streams; cessation of spring flow (localised extinction of spring-dependent flora and fauna); lowered inputs into gulf marine waters (reduced fisheries productivity); insufficient flows to enable successful fish reproduction; increased salinity in certain soils (rise in groundwater level).
- b. Changed timing of any flows that would: disadvantage both freshwater and marine fish and invertebrates if releases do not match breeding requirements (impeded movement of adults and larval dispersal, and loss of spawning and nursery habitat, e.g. riffles and estuarine wetlands); pulses of nutrient/pesticide agricultural run-off (reduce water quality); changes in species composition.
- c. The likelihood that water extraction in the region will have a major impact has been assessed as medium to high (King et al. 2015).
- d. Climate change predictions for the region include a rise in temperature, increased evaporation, greater cyclone intensity and a rise in sea levels. Likely consequences are:
- e. Reduced waterhole persistence.
- f. Increased run-off (greater sediment loads) and aggravated gully erosion.
- g. Loss of species diversity as conditions surpass physiological tolerances.
- h. Saltwater incursion into lowland wetlands.

Given the region already experiences high intra- and inter-year variation in rainfall and temperature, these
suspected changes under current climate change scenarios may not be as significant a threat compared to other regions. While the aquatic biota appears able to cope with the current extreme wet and dry conditions, their capacity to deal with an amplification of those extremes is unknown. Potential effects of development and climate change on the aquatic systems in northern Australia has been thoroughly addressed in Leigh & Sheldon (2008), Morrongiello et al. (2011), Close et al. (2012) and King et al. (2015).

Overall, the most significant impact of water extraction and/or climate change would be the reduced capacity of waterholes to act as effective dry season refugia for the aquatic flora and fauna of the affected catchments. Even in its current near-natural state, the biota of some wetlands had not fully recovered three years after a major flood event (Hogan & Vallance 2012).

The concerns over exotic biota relate to the potential invasion of exotic and non-indigenous taxa via inter-basin transfer of water and the stocking of impounded waters. Pests such as tilapia could severely impact on populations of smaller native fish and introduction of non-local stocks of native fish, e.g. sooty grunter *Hephaestus fuliginosus* and sleepy cod *Oxyeleotris lineolata*, could result have a similar effect. There is also the possible introduction of disease with such animals and genetic dilution. Within any developed agricultural area there is considerable risk with the introduction and spread of aquatic plants especially ponded pasture grasses such as hymenachne. The impact of any aquatic pest species in EGoC is multiplied by the high degree of inter-catchment connectivity that occurs during floods which provides an avenue for the infestation of large areas of instream and floodplain wetlands.

For a more detailed review of the aquatic systems in the Norman, Gilbert, Staaten and Mitchell study areas - their status and threats, see Tait et al. (2015).

## 10 Constraints

The expert panel highlighted several deficiencies or constraints which should be considered when interpreting assessment results. These constraints are typical across most Aquatic Conservation Assessments and relate largely to the availability and completeness of input data:

- a. A general lack of survey data for the region in part due to accessibility and funding limitations
- g. A general lack of ecological knowledge for wetlands across the region
- b. Geographical biases in species location databases
- c. The ecological relevance of the riverine subsection measures results calculated at the riverine subsection level (i.e. measures of species diversity and richness) will be driven in part by the size of the riverine subsections
- h. Missing non riverine wetlands –wetland systems below minimum threshold size of the Queensland Wetlands Mapping will not have bene assessed

# 11 Recommendations

## 11.1 General

The following general recommendations came out of the expert panel workshops:

- a. There is a need for increased knowledge on invertebrate fauna, especially of springs and sub-surface environments.
- b. The knowledge of freshwater turtles for the region is very poor. There is a high likelihood of either endemic *Elseya* taxon in the catchments or that the range or *E. lavarackorum* extends into the Eastern Gulf of Carpentaria (C. Limpus EP). More survey work is required by expert in turtle sampling.
- c. The interaction of groundwater with above surface wetlands and the ecology of groundwater-dependent ecosystems in region need serious investigation, especially when considering any water extraction proposals.

## 11.2 Methodology

The following methodological recommendations came out of the expert panel workshops:

- a. Consider the use of new measure(s) to reflect migratory behaviour of fish (B. Ebner).
- b. In poorly sampled study areas consider using habitat models or some type of data smoothing/extrapolation instead of point record counts for diversity and richness measures.
- c. Consider using data on the abundance and intensity of pest infestation when determining the impact of exotic species on wetland ecosystems.

## 12 References

Bamford, M, Watkins, D, Bancroft, W, Tischler, G, Wahl, J 2008, *Migratory shorebirds of the East Asian* — *Australasian flyway: population estimates and internationally important sites*, Wetlands International — Oceania, Canberra.

Batlle-Aguilar, J, Harrington, GA, Leblanc, M, Welch, C, Cook, PG 2014, Chemistry of groundwater discharge inferred from longitudinal river sampling, *Water Resources Research* 50, 1550-1568.

Bayliss, P, Buckworth, R, Dichmont, C (eds) 2014, *Assessing the water needs of fisheries and ecological values in the Gulf of Carpentaria*, Final report prepared for the Queensland Department of Natural Resources and Mines (DNRM), CSIRO, Australia.

Blackman, JG, Perry, TW, Ford, GI, Craven, SA, Gardiner, SJ, De Lai, RJ 1999, *Characteristics of important wetlands in Queensland*, Environmental Protection Agency, Queensland.

Boulton, AJ, Humphreys, WF, Eberhard, SM 2003, Imperilled subsurface waters in Australia: Biodiversity, threatening processes and conservation. *Aquatic Ecosystem Health and Management* 6: 41-54.

Burrows, DW 2004, A Review of Aquatic Management Issues and Needs for the Northern Gulf NRM Planning Region, ACTFR Report 04/16, James Cook University, Townsville.

Burrows, DW, Perna, C 2006, A Survey of Freshwater Fish and Fish Habitats of the Norman River, Gulf of Carpentaria, ACTFR Report 06/31, James Cook University, Townsville.

Chessman, B 2003, Signal 2iv: A Scoring System for Macro-Invertebrates ('water bugs') in Australian Rivers - User Manual, Department of Environment Heritage, Canberra.

Clayton, PD, Fielder, DF, Howell, S, Hill, CJ 2006, Aquatic biodiversity assessment and mapping method (AquaBAMM): a conservation values assessment tool for wetlands with trial application in the Burnett River catchment, Environmental Protection Agency, Brisbane.

Close, PG, Wallace, J, Bayliss, P, Bartolo, R, Burrows, D, Pusey, BJ, Robinson, CJ, McJannet, D, Karim, F, Byrne, G, Marvanek, S, Turnadge, C, Harrington, G, Petheram, C, Dutra, LXC, Dobbs, R, Pettit, N, Jankowski, A, Wallington, T, Kroon, F, Schmidt, D, Buttler, B, Stock, M, Veld, A, Speldewinde, P, Cook, BA, Cook, B, Douglas, M, Setterfield, S, Kennard, M, Davies, P, Hughes, J, Cossart, R, Conolly, N, Townsend, S 2012, *Assessment of the likely impacts of development and climate change on aquatic ecological assets in Northern Australia*, A report for the National Water Commission, Australia. Tropical Rivers and Coastal Knowledge (TRaCK) Commonwealth Environmental Research Facility, Charles Darwin University, Darwin.

Conrick, D, Cockayne, B 2000, *Queensland Australian River Assessment System (AusRivAS) Sampling and Processing Manual*, Queensland Department of Natural Resources, Freshwater Biological Monitoring Unit, Rocklea.

Cook, B, Kennard, M, Ward, D, Pusey, B 2011, *The Hydroecological Natural Heritage Story of Cape York Peninsula*, Report to the Queensland Government Department of Environment and Resource Management.

CSIRO 2016, Proposed methods report for the Mitchell catchment. A report from the CSIRO Northern Australia Water Resource Assessment to the Government of Australia, CSIRO, Australia.

Cullen, P 2003, The Heritage River Proposal – Conserving Australia's undamaged rivers. In: Aquatic Protected Areas. What works best and how do we know? *Proceedings of the World Congress on Aquatic Protected Areas, Cairns, Australia – August 2002.* (eds. J.P. Beumer, A. Grant and D.C. Smith) University of Queensland Printery, St Lucia: Queensland, Australia. pp. 513-520.

DEHP 2017, *Connectivity and the landscape*, WetlandInfo, Department of Environment and Heritage Protection, Queensland, viewed 6 December 2017, <a href="https://wetlandinfo.ehp.qld.gov.au/wetlands/ecology/landscape/">https://wetlandinfo.ehp.qld.gov.au/wetlands/ecology/landscape/</a>

DERM 2009a, *Biodiversity Planning Assessment Einasleigh Uplands Bioregion v1.1. Fauna Expert Panel Report*, Department of Environment and Resource Management, Townsville.

DERM 2009b, *Biodiversity Planning Assessment Einasleigh Uplands Bioregion v1.1. Landscape Expert Panel Report*, Department of Environment and Resource Management, Townsville.

DERM 2010, Aquatic Conservation Assessment for the non-riverine, riverine and estuarine wetlands of Southern Gulf of Carpentaria Version 1.1 (Draft). Aquatic fauna expert panel report, Department of Environment and Resource Management, Brisbane.

DES 2018, Aquatic Conservation Assessment using AquaBAMM for the riverine and non-riverine wetlands of the Eastern Gulf of Carpentaria: Summary Report, Version 1.1. Department of Environment and Science, Queensland Government.

Driscoll, PV 1995, *Wetland Definition and Fauna Assessment of Cape York Peninsula*, Final Report for NRAP Project NR09, Cape York Peninsula Land Use Strategy.

Driscoll, PV 2001, *Gulf of Carpentaria Wader Surveys 1998-9*, Report to Queensland Environmental Protection Agency. Queensland Wader Study Group of Birds Queensland.

Dutson, G, Garnett, S, Gole, C 2009, *Australia's Important Bird Areas - Key sites for bird conservation*, Conservation Statement Number 15, Birds Australia, Melbourne.

Ecowise Environmental 2007, *Aquatic Fauna Survey of the Northern Gulf Region - June 2006*, Final report to Northern Gulf Resource Management Group.

Ecowise Environmental 2009, *Mutton Hole Wetlands. Wetlands Aquatic Fauna Survey - March 2009*, Report to Northern Gulf Resource Management Group.

EHP 2012a, An Aquatic Conservation Assessment for the riverine and non-riverine wetlands of Cape York catchments. Flora, fauna and ecology expert panel report, Department of Environment and Heritage Protection, Brisbane.

EHP 2012b, Aquatic Conservation Assessments using AquaBAMM for the riverine and non-riverine wetlands of the Cape York catchments v1.1. Summary Report, Department of Environment and Heritage Protection, Brisbane.

EHP 2012c, A Biodiversity Planning Assessment for the Cape York Peninsula Heritage Area. Flora, fauna and landscape expert panel report, Department of Environment and Heritage Protection, Queensland Government.

EHP 2015a, *Biodiversity Planning Assessment Gulf Plains Bioregion v1.1. Fauna Expert Panel Report*, Department of Environment and Heritage Protection, Queensland Government.

EHP 2015b, *Biodiversity Planning Assessment Gulf Plains Bioregion v1.1. Landscape Expert Panel Report*, Department of Environment and Heritage Protection, Queensland Government.

Faggotter, S, Burford, M, Robson, BJ, Webster, IT 2011, *Nutrients and primary production in the Flinders River*, TRaCk report, Charles Darwin University, Darwin.

Fairfax, RJ, Fensham, RJ 2002, In the footsteps of J. Alfred Griffiths: a cataclysmic history of Great Artesian Basin springs in Queensland, *Australian Geographic Studies* 40, 210-230.

Fensham, RJ 2006, 'Spring wetlands of the Great Artesian Basin', paper for the 2006 Australian State of the Environment Committee, Department of Environment and Heritage, Canberra.

Fensham, R, Fairfax, R 2005, *Great Artesian Basin Water Resource Plan. Ecological Assessment of GAB springs in Queensland*, Report for the Department of Natural Resources and Mines, Queensland Environmental Protection Agency, Brisbane.

Fensham, RJ, Fairfax, RJ, Sharpe, PR 2004, Spring wetlands in seasonally arid Queensland: floristics, environmental relations, classification and conservation values, *Australian Journal of Botany* 52, 583-595.

Fordham, DA, Georges, A, Corey, B, Brook, BW 2006, Feral pig predation threatens the indigenous harvest and local persistence of snake-necked turtles in northern Australia, *Biological Conservation* 133, 379-388.

Garnett, S 1985, Heronries of the Mitchell River delta, Sunbird 15, 1-4.

Garnett, S, Taplin, A 1990, *Wading bird abundance and distribution during the wet season on the Queensland coast of the Gulf of Carpentaria*, Report to Queensland National Parks and Wildlife Service, RAOU, Moonee Ponds.

Halliday, IA, Saunders, T, Sellin, MJ, Allsop, Q, Robins, JB, McLennan, M, Kurnoth, P 2012, *Flow impacts on estuarine finfish fisheries of the Gulf of Carpentaria*, Department of Agriculture, Fisheries and Forestry, Queensland, Brisbane.

Healthy Waterways 2012, Report Card Methods - How are the grades calculated? Healthy Waterways, Brisbane.

Hermoso, V, Kennard, M, Pusey, B, Douglas, M 2011, Identifying priority areas for the conservation of freshwater biodiversity. In *Aquatic Biodiversity in Northern Australia: Patterns, Threats and Future*, Pusey, BJ (ed), pp 133-149, Charles Darwin University Press, Darwin.

Hermoso, V, Ward, DP, Kennard, MJ 2013, Prioritizing refugia for freshwater biodiversity conservation in highly seasonal ecosystems, *Diversity and Distributions* 19, 1031-1042.

Hogan, A, Vallance, T 2005, *Rapid assessment of fish biodiversity in southern Gulf of Carpentaria catchments*, Project report No. QI04074, Queensland Department of Primary Industries & Fisheries, Walkamin.

Hogan, AE, Vallance, TD 2011, A survey of the aquatic fauna on Delta Downs station, Karumba, Alf Hogan and Associates, Yungaburra.

Hogan, AE, Vallance, TD 2012, A survey of fishes in the flood-affected reaches of the Yappar-Norman River catchment, Alf Hogan and Associates, Yungaburra.

Hogan, A, Dickson, A, Vallance, T, Gleeson, P, Bennison, G 2009, *Aquatic Fauna Survey of the Staaten River Catchment - July/August 2008*, Final report to Northern Gulf Resource Management Group. Ecowise Australia Pty Ltd.

Hunt, RJ, Jardine, TD, Hamilton, SK, Bunn, SE 2012, Temporal and spatial variation in ecosystem metabolism and food web carbon transfer in a wet-dry tropical river, *Freshwater Biology* 57, 435–450.

Hydrobiology Pty Ltd, 2005, *Ecological and Geomorphological Assessment for the Gulf and Mitchell Water Resources Plan*, Consultant Technical Advisory Panel Report to the Queensland Department of Natural Resources and Mines.

Jaensch, R, Richardson, P 2013, Waterbird breeding colonies in the Gulf Plains, 2009-2013, Sunbird 43, 45-64.

Jaensch, R, Richardson, P 2014, South-East Gulf of Carpentaria: Karumba-Smithburne (Delta Downs) section, Information Sheet on EAA Flyway Network Sites.

Jardine, TD, Pusey, BJ, Hamilton, SK, Pettit, NE, Davies, PM, Douglas, MM, Sinnamon, V, Halliday, IA, Bunn, SE 2012, Fish mediate high food web connectivity in the lower reaches of a tropical floodplain river, *Oecologia* 168, 829-838.

Kennard, MJ (ed) 2011, *Priorities for identification and sustainable management of high conservation value aquatic ecosystems in northern Australia*, Final Report for the Department of Sustainability, Environment, Water, Populations and Communities and the National Water Commission. Tropical Rivers and Coastal Knowledge (TRaCK) Commonwealth Environmental Research Facility, Charles Darwin University, Darwin.

Kerezsy, A, Ebner, E 2016, *Talaroo Station: Spring inspection/appraisal for future infrastructure works and freshwater fish survey, April 2016*, Report to the Ewamian Aboriginal Corporation.

King, AJ, Townsend, SA, Douglas, MM, Kennard, MJ 2015, Implications of water extraction on the low-flow hydrology and ecology of tropical savannah rivers: an appraisal for northern Australia, *Freshwater Science* 34, 741-758.

Le Feuvre, MC, Dempster, T, Shelley, JJ, Swearer, SE 2016, Macroecological relationships reveal conservation hotspots and extinction-prone species in Australia's freshwater fishes, *Ecology and Biogeography* 25, 176-186.

Leigh, C 2013, Dry-season changes in macroinvertebrate assemblages of highly seasonal rivers: responses to low flow, no flow and antecedent hydrology, *Hydrobiologia* 703, 95-112.

Leigh, C, Sheldon, F 2008, Hydrological changes and ecological impacts associated with water resource development in large floodplain rivers in the Australian tropics, *River Research and Applications* 24, 1251-1270.

Lovelock, CE, Skilleter, G, Saintlan, N 2012, Tidal wetlands In *Marine Climate Change Impacts and Adaptation Report Card for Australia 2012,* Poloczanska ES, Hobday, AJ, Richardson, AJ (eds), p 5, CSIRO.

Lymburner, L, Burrows, D 2008, A Landsat TM inventory of waterbody permanence and clarity in the Mitchell and Gilbert catchments, north Queensland, ACTFR report 08/16, James Cook University, Townsville.

Lyon, B, Franklin, CE 2009, *Natural Values of the Perched Bauxite Springs - Steve Irwin Wildlife Reserve, Cape York Peninsula*, Report to Australia Zoo.

McJannet, D, Marvanek, S, Kinsey-Henderson, A, Petheram, C, Wallace, J 2014, Persistence of in-stream waterholes in ephemeral rivers of tropical northern Australia and potential impacts of climate change, *Marine and Freshwater Research* 65, 1131-1144.

Morrongiello, JR, Beatty, SJ, Bennett, JC, Crook, DA, Ikedife, DNEN, Kennard, MJ, Kerezsy, A, Lintermans, M, McNeil, DG, Pusey, BJ, Rayner, T 2011, Climate change and its implications for Australia's freshwater fish, *Marine and Freshwater Research* 62, 1082-1098.

Mueller, N, Lewis, A, Roberts, D, Ring, S, Melrosea, R, Sixsmitha, J, Lymburnera, L, McIntyrea, A, Tan, A, Curnowa, S, Ip, A. Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia, *Remote Sensing of Environment* 147, 341-352.

Negus, P, Marshall, J, Steward, A, McGregor, G, O'Connor, R 2013, *The unique aquatic ecosystems of Talaroo Hot Springs - Sampling methods, results and management recommendations*, Report to the Ewamian Aboriginal Corporation.

Pearce, MG, Perna, C, Hedge, S 2009, *Survey of Eureka Creek and Walsh River Fish Community Following the Removal of Tilapia using Rotenone*, Queensland Department of Employment, Economic Development and Innovation.

Pettit, NE, Jardine, TD, Hamilton, SK, Sinnamon, V, Valdez, D, Davies, PM, Douglas, MM, Bunn, SE 2012, Seasonal changes in water quality and macrophytes and the impact of cattle on tropical floodplain waterholes, *Marine and Freshwater Research* 63, 788-800.

Peverell, SC 2005, Distribution of sawfishes (Pristidae) in the Queensland Gulf of Carpentaria, Australia, with notes on sawfish ecology, *Environmental Biology of Fishes* 73, 391-402.

Preece, N 2009, *Northern Gulf Rapid Terrestrial Biodiversity Assessment*, Report prepared by Biome5 Environmental Consultants for Northern Gulf Resource Management Group Ltd.

Preece, N, Franklin, D 2013, *Biodiversity Survey Gilbert River 2009 Flooded area on Delta Downs Station, June 2013*, Report to Northern Gulf Resource Management Group Ltd by Biome5 Pty Ltd, Atherton.

Pusey, BJ (ed) 2011, Aquatic biodiversity in northern Australia: patterns, threats and future, Charles Darwin University Press, Darwin.

Queensland Government 2007, *Wild Rivers and Other Legislation Amendment Bill 2007*, Queensland Government, Brisbane.

Reardon, TB, Robson, SKA, Parsons, JG, Inkster, T 2010, *Review of the threatened status of microchiropteran bat species on Cape York Peninsula*, Final report for CY TSAM 01. South Australian Museum, Adelaide & James Cook University, Townsville.

Ryan, TJ, Aland, G, Cogle, AL 2002, *Environmental Condition of the Upper Mitchell River System: Water Quality and Ecology*, Report for Natural Heritage Trust by Queensland Department of Natural Resources and Mines and the Queensland Department of Primary Industries, Walkamin.

Sattler, PS, Williams, RD (eds) 1999, The Conservation Status of Queensland's Bioregional Ecosystems, Environmental Protection Agency, Brisbane.

Sheldon, F, Boulton, AJ, Puckridge, JT 2002, Conservation value of variable connectivity: aquatic invertebrate assemblages of channel and floodplain habitats of a central Australian arid-zone river, Cooper Creek. *Biological Conservation* 103: 13-21.

Shellberg, J 2014, *Physical and Biological Values of Olkola Country, Central Cape York Peninsula*, Published by Olkola Aboriginal Corporation with funding from Bush Heritage Australia.

Shellberg, J, Brooks, A 2012, Alluvial gully erosion: A dominant erosion process across tropical northern Australia, TRaCk report, Charles Darwin University, Darwin.

Shellberg, J, Ross, M, Burns, R, Coleman, F, Hogbin, A, Grimes, K, Turpin, G, Lyon, B, Lyon, S, Howley, C, Carroll, J, Ross, A, Ross, B, Kulka, G, Ross, T, Kulka, K, Ross, RJ, Bramwell, W 2014, *Physical, Biological, and Cultural Landscapes of Crosbie Station, Olkola Country, Cape York Peninsula, Summary Report of 5 Full Report Appendices*, Published by Olkola Aboriginal Corporation, with funding from the Australian Government's Caring for Our Country program and Queensland Department of Aboriginal and Torres Strait Islander and Multicultural Affairs.

Shellberg, J, Ross, M, Hogbin, A, Preece, N, Grimes, K, Turpin, G, Newton, M, van Oosterzee, P, Carroll, J, Coates, J, Ross, T, Kulka, G, Jack, L, Kulka, H, Ross, A, Ross, D, Kulka, K, Bramwell, W, Malcolm, B, Lowdown, J, Coleman, F, Preece, L 2015, *Kimba Plateau Physical and Biological Diversity, Olkola Country, Cape York Peninsula*, Published by Olkola Aboriginal Corporation, with funding from the Queensland Government's Indigenous Land and Sea Grants Program through the Department of Environment and Heritage Protection.

Smith, GC, Mathieson, M, Hogan, LD, Ferguson, D 2011, *Report to Northern Gulf Resource Management Group: Vertebrate Fauna Recorded on Gilberton (Gilberton Station), Stuarts Spring (Bagstowe Station) and Goanna Spring (Lynwater Station) Nature Refuges and Flat Creek Station, May 2011*, Unpublished report by Queensland Department of Environment and Resource Management (DERM), Queensland Herbarium : Mt Coot-tha.

Stein, JL, Stein, JA, Nix, HA 2002, Spatial analysis of anthropogenic river disturbance at regional and continental scales: identifying the wild rivers of Australia, *Landscape and Urban Planning* 60, 1-25.

Tait, J, Rizvi, S, Waller, N 2015, Northern Gulf Inland Waters Regional NRM Assessment, Northern Gulf Resource Management Group, Georgetown.

Taplin, A 1991, *Distribution and abundance of selected waterbird species in the Gulf Plains and western Cape York during 1990*, Final report to Queensland National Parks and Wildlife Service.

Vallance, TD, Hogan, AE 2001, *Mitchell River Watershed, Stockroute/reserves Fisheries Audit*, Report Q001019, Department of Primary Industries, Walkamin.

Vallance, TD, Hogan, AE, Peterken, CJ 2000, *Scoping Report - Gulf Rivers Dams and Weirs, Initial Appraisal of Fisheries Aspects*, Project report QO01017, Department of Primary Industries, Walkamin.

Vanderduys, E, Kutt, A 2011, *Biodiversity Condition in the Northern Gulf*, Report by CSIRO Ecosystem Sciences, Townsville.

Waltham, N 2016, Unravelling life history of the Inland Freshwater Crab Austrothelphusa transversa in seasonal tropical river catchments, Australian Zoologist 38, 217-222.

Waltham, N, Burrows, D, Butler, B, Wallace, J, Thomas, C, James, C, Brodie, J 2013, *Waterhole ecology in the Flinders and Gilbert catchments. A technical report to the Australian Government from the CSIRO Flinders and Gilbert Agricultural Resource Assessment, part of the North Queensland Irrigated Agriculture Strategy, CSIRO Water for a Healthy Country and Sustainable Agriculture Flagship Report, TropWATER - James Cook University, Townsville.* 

## 13 Appendix I. Expert Panel Terms of Reference

The terms of reference presented below are to be read in conjunction with the AquaBAMM report that requires expert panel workshops to be run to inform a number of AquaBAMM criteria and their associated indicators and measures (Clayton et al. 2006).

Members of the expert panel were experts in scientific disciplines relevant to freshwater ecosystems, processes and species. Panel members were required to have professional or semi-professional standing in their fields of expertise and have direct knowledge and experience of the EGoC. Experience in the identification and assessment of riverine and non-riverine values including natural processes, species and places of significance was an important factor in the selection process; the panel included members with experience in these areas, as well as in their areas of specialist technical expertise. Panel members were appointed on the basis of their individual standing rather than as representatives of a particular interest group or organisation.

### 13.1 Aquatic flora expert panel

The Aquatic Flora Expert Panel is established to provide expert advice on the aquatic floristic values of the riverine and non-riverine wetlands in the Eastern Gulf of Carpentaria. The panel membership will consist of professionals with expertise relating to aquatic flora and riparian flora and floristic communities.

The advice provided by the expert panel at the workshop will be compiled into written and electronic form, which the Department of Environment and Science will use in the Aquatic Conservation Assessment (ACA). The ACA will assist in assigning aquatic ecological and conservation values to the riverine and non-riverine wetlands of the Eastern Gulf of Carpentaria.

The tasks to be undertaken by the panel include, but without limitation, the following:

- Review relevant existing spatial data (species point records) and available information (reports etc.);
- Provide advice on aquatic dependent endangered, vulnerable or near-threatened flora species habitat and localities;
- Provide advice on aquatic dependent priority flora species habitat and localities;
- Identify priority ecosystems or areas important for significant floral communities or species;
- Provide advice on aquatic dependent exotic flora species localities and abundance;

### 13.2 Aquatic fauna expert panel

The Aquatic Fauna Expert Panel is established to provide expert advice on the aquatic fauna values of the riverine and non-riverine wetlands in the Eastern Gulf of Carpentaria. The panel membership will consist of professionals with expertise relating to aquatic fauna values.

The advice provided by the expert panel at the workshop will be compiled into written and electronic form, which the Department of Environment and Science will use in the Aquatic Conservation Assessment (ACA). The ACA will assist in assigning aquatic ecological and conservation values to the riverine and non-riverine wetlands in the Eastern Gulf of Carpentaria.

The tasks to be undertaken by the panel include, but without limitation, the following:

- Review relevant existing spatial data (species point records) and available information (reports etc.);
- Provide advice on aquatic dependent rare or threatened fauna species habitat and localities;
- Provide advice on aquatic dependent priority fauna species habitat and localities;
- Identify priority ecosystems or areas important for significant faunal communities or species;
- Provide advice on aquatic dependent exotic fauna species localities and abundance;

### 13.3 Aquatic ecology expert panel

The Aquatic Ecology Expert Panel is established to provide expert advice based on experience and demonstrated scientific theory on natural geological or geo-morphological and hydrological processes, and issues of connectivity between aquatic systems within the waterways in Eastern Gulf of Carpentaria. The panel membership will consist of professionals in fields of expertise relating to water quality, wetland health assessment, geomorphology, fish passage and hydrological processes.

The advice provided by the expert panel at the workshop will be compiled into written and electronic form, which the Department of Environment and Science will use in the Aquatic Conservation Assessment (ACA). The ACA will assist in assigning aquatic ecological and conservation values to the riverine and non-riverine wetlands of the Eastern Gulf of Carpentaria.

The tasks to be undertaken by the panel include, but without limitation, the following:

- Identify areas of significant geomorphological, ecological or hydrological processes (Special Features);
- Provide advice on biodiversity 'hot-spots' or areas of particular significance for aquatic species or communities;
- Establish principles for applying the connectivity criterion in the study area;
- Weight measures relative to their importance for an indicator, and
- Rank indicators relative to their importance for a criterion.

# 14 Appendix II - Expert Panel Definitions

## 14.1 Expert Panel Definitions (Fauna)

#### 14.1.1 Wetland indicator species

Wetland indicator species are species that are adapted to and dependent on living in wetland conditions for all, or at least part of, their life.

WIS have adapted to living in wetlands and are dependent on them for:

- a. all of their life; or
- b. a major part of their life; or
- c. for critical stages of their lifecycle, such as breeding and larval development.

Wetland ecosystems tend to include species evolved for wet conditions. Some of these species are dependent on the presence of water for every stage of their life cycle, and need to be immersed in water, or floating upon water, for their total life cycle, while others require water for most of their life cycle stages or for a critical stage in their development. These species are considered as WIS unlike those that may only access a wetland to drink.

The WISL includes mainly the more common fauna species. Most rare species and all vagrant fauna species have not been included as they are considered too poorly known or erratic. Species, other than those listed, may be accepted as wetland indicator species for a certain locality given expert recommendation and reliable site specific data.

Most marine species are also not included in the WISL as the wetland definition excludes marine water more than 6m below low tide.

#### 14.1.2 Waterbirds

Bird species that are dependent on wetland environments.

#### 14.1.3 Migratory Species

Bird species that are dependent on wetland environments whose entire population or any geographically separate part of the population cyclically and predictably cross one or more national jurisdictional boundaries. This definition excludes those species listed as "nomadising" or "range extensions" and those travelling less than 100 km. Based on Convention on Migratory Species; use JAMBA, CAMBA and ROKAMBA lists as a starting point.

#### 14.1.4 Priority Species

A priority fauna species must exhibit one or more of the following significant values:

- a. It is endemic to the study area (>75% of its distribution is in the study area/catchment).
- b. It has experienced, or is suspected of experiencing, a serious population decline.
- c. It has experienced a significant reduction in its distribution and has a naturally restricted distribution in the study area/catchment.
- d. It is currently a small population and threatened by loss of habitat.
- e. It is a significant disjunct population.
- f. Migratory species (other than birds).
- g. A significant proportion of the breeding population (>1% for waterbirds, >75% other species) occurs in the waterbody (see Ramsar Criterion 6 for waterbirds).
- h. Taxa vulnerable to impacts of climate change Species that are considered to be adversely affected by the predicted changes in climate, e.g. increasing temperatures, sea level rise and increasing frequency of extreme weather events (drought, flood & cyclones). Species can only be listed under this reason if there is sufficient knowledge of species' biology and its interaction with climate that would support an assessed impact under climate change scenarios.

## 14.2 Expert Panel Definitions (Flora)

#### 14.2.1 Wetland indicator Species

Wetland indicator species are those species that are adapted to and dependent on living in wet conditions for at least part of their life and are found either within or immediately adjoining a riverine, non-riverine or estuarine wetland.

This definition of a wetland indicator species extends beyond the more traditional definition of submerged and floating aquatic plants to include plants inhabiting the littoral zone (waters edge) and plants that usually have 'wet feet' on the toe of the bank. This meaning was chosen because it was considered to best capture the intent of the AquaBAMM indicator and measure of Species Richness: "Richness of wetland dependent plants" (3.1.5). The indicator is a measure of floristic richness of a particular spatial unit's aquatic environment, and hence, a broad definition will better depict the flora richness value at a given location.

For additional information on Fauna Wetland Indicator Species, go to:

http://wetlandinfo.ehp.qld.gov.au/wetlands/ecology/components/flora/flora-indicator-species-list.html

#### 14.2.2 Aquatic Species (QLD Herbarium definition)

Species adapted to growing in or on permanent water (obligate)

#### 14.2.3 Semi-aquatic Species (QLD Herbarium definition)

Species that can withstand near-permanent shallow water and require only periodic temporary inundation - bordering permanent water, in bogs and shallow swamps.

#### 14.2.4 Exotic Flora

Only exotic plants that cause, or have the potential to cause, significant detrimental impact on natural systems within a riverine or non-riverine systems.

#### 14.2.5 Priority Species

A priority flora species must exhibit one or more of the following significant values:

- i. It forms significant macrophyte beds (in shallow or deep water).
- j. It is an important/critical food source.
- k. It is important/critical habitat.
- I. It is implicated in spawning or reproduction for other fauna and/or flora species.
- m. It is at its distributional limit or is a disjunct population.
- n. It provides stream bank or bed stabilisation or has soil-binding properties.
- o. It is a small population and subject to threatening processes.
- p. Taxa vulnerable to impacts of climate change Species that are considered to be adversely affected by the predicted changes in climate, e.g. increasing temperatures, sea level rise and increasing frequency of extreme weather events (drought, flood & cyclones). Species can only be listed under this reason if there is sufficient knowledge of species' biology and its interaction with climate that would support an assessed impact under climate change scenarios.

### 14.3 Expert Panel Derived Measures

The expert panel process was used to derive poygons for the following measures:

- 5.1.4. Habitat for significant numbers of waterbirds.
- 5.2.1. Presence of 'priority' aquatic ecosystem.
- 6.1.1 Presence of distinct, unique or special geomorphic features.
- 6.2.1 Presence of (or requirement for) distinct, unique or special ecological processes.
- 6.3.1 Presence of distinct, unique or special habitat.
- 6.3.3 Ecologically significant wetlands identified through expert opinion and/or documented study.
- 6.3.4 Areas important as refugia from the predicted effects of climate change (e.g. source of species repopulation.
- 6.4.1 Presence of distinct, unique or special hydrological regimes (e.g. spring fed stream, ephemeral stream, boggomoss).
- 7.1.2 Migratory or routine 'passage' of fish and other fully aquatic species (upstream, lateral or downstream movement) within the spatial unit
- 7.2.1 The contribution (upstream or downstream) of the spatial unit to the maintenance of groundwater ecosystems with significant biodiversity values, including those features identified through Criteria 5 and/or 6 (e.g., karsts, cave streams, artesian springs)
- 7.5.1 –The contribution of the spatial unit to the maintenance of estuarine and marine ecosystems with significant biodiversity values, including those features identified through Criteria 5 and/or 6
- 8.2.5. Wetland type representative of the study area (non-riverine only).

# 15 Appendix III - Criteria, indicators and measures for the Eastern Gulf of Carpentaria assessments

| Criteria and Indicators           | Measures |                                                                                                                                                                            | Riverine | Non-<br>riverine |
|-----------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|
| 1 Naturalness aquatic             |          |                                                                                                                                                                            |          |                  |
| 1.1 Exotic flora/fauna            | 1.1.1    | Presence of 'alien' fish species within the wetland                                                                                                                        | Y        | Y                |
|                                   | 1.1.2    | Presence of exotic aquatic and semi-aquatic plants within the wetland                                                                                                      | Y        | Y                |
|                                   | 1.1.3    | Presence of exotic invertebrate fauna within the wetland                                                                                                                   | Y        | Y                |
|                                   | 1.1.4    | Presence of feral/exotic vertebrate fauna (other than fish) within the wetland                                                                                             | Y        | Y                |
| 1.3 Habitat features modification | 1.3.4    | Presence/absence of dams/weirs within the wetland                                                                                                                          | Y        |                  |
|                                   | 1.3.5    | Inundation by dams/weirs (% of waterway length within the wetland)                                                                                                         | Y        |                  |
|                                   | 1.3.7    | % area of remnant wetland relative to preclear extent for each spatial unit                                                                                                | Y        | Y                |
| 1.4 Hydrological modification     | 1.4.5    | Hydrological disturbance/modification of the wetland (e.g. as determined through EHP wetland mapping and classification)                                                   |          | Y                |
| 2 Naturalness catchment           |          |                                                                                                                                                                            |          |                  |
| 2.1 Exotic flora/fauna            | 2.1.1    | Presence of exotic terrestrial plants in the assessment unit                                                                                                               | Y        | Y                |
| 2.2 Riparian disturbance          | 2.2.1    | % area remnant vegetation relative to preclear<br>extent within buffered riverine wetland or<br>watercourses                                                               | Y        |                  |
|                                   | 2.2.2    | Total number of REs relative to preclear number<br>of REs within buffered riverine wetland or<br>watercourses                                                              | Y        |                  |
|                                   | 2.2.5    | % area of remnant vegetation relative to pre-clear<br>extent within buffered non-riverine wetland: 500m<br>buffer for wetlands >= 8Ha, 200m buffer for<br>smaller wetlands |          | Y                |
| 2.3 Catchment disturbance         | 2.3.1    | % "agricultural" land-use area (i.e. cropping and horticulture)                                                                                                            | Y        | Y                |
|                                   | 2.3.2    | % "grazing" land-use area                                                                                                                                                  | Y        | Y                |
|                                   | 2.3.3    | % "vegetation" land-use area (i.e. native veg + regrowth)                                                                                                                  | Y        | Y                |
|                                   | 2.3.4    | % "settlement" land-use area (i.e. towns, cities, etc)                                                                                                                     | Y        | Y                |
| 2.4 Flow                          | 2.4.1    | Farm storage (overland flow harvesting, floodplain                                                                                                                         | Y        |                  |

| Criteria and Indicators             | Measures |                                                                                                                                                 | Riverine | Non-<br>riverine |  |
|-------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|--|
| Modifications                       |          | ring tanks, gully dams) calculated by surface area                                                                                              |          |                  |  |
| 3 Diversity and richness            |          |                                                                                                                                                 |          |                  |  |
|                                     | 3.1.1    | Richness of native amphibians (riverine wetland breeders)                                                                                       | Y        |                  |  |
|                                     | 3.1.2    | Richness of native fish                                                                                                                         | Y        | Y                |  |
|                                     | 3.1.3    | Richness of native aquatic dependent reptiles                                                                                                   | Y        | Y                |  |
| 3.1 Species                         | 3.1.4    | Richness of native waterbirds                                                                                                                   | Y        | Y                |  |
|                                     | 3.1.5    | Richness of native aquatic plants                                                                                                               | Y        | Y                |  |
|                                     | 3.1.6    | Richness of native amphibians (non-riverine wetland breeders)                                                                                   |          | Y                |  |
|                                     | 3.1.7    | Richness of native aquatic dependent mammals                                                                                                    | Y        | Y                |  |
|                                     | 3.2.1    | Richness of macroinvertebrate taxa                                                                                                              | Y        |                  |  |
| 3.2 Communities/ assemblages        | 3.2.2    | Richness of REs along riverine wetlands or watercourses within a specified buffer distance                                                      | Y        |                  |  |
| 3.3 Habitat                         | 3.3.2    | Richness of wetland types within the local catchment (e.g. SOR sub-section)                                                                     | Y        | Y                |  |
|                                     | 3.3.3    | Richness of wetland types within the sub-<br>catchment                                                                                          | Y        | Y                |  |
| 4 Threatened species and ecosystems |          |                                                                                                                                                 |          | •                |  |
| 4.1 Species                         | 4.1.1    | Presence of rare or threatened aquatic ecosystem dependent fauna species – NCAct, EPBCAct                                                       | Y        | Y                |  |
|                                     | 4.1.2    | Presence of rare or threatened aquatic ecosystem dependent flora species - NCAct, EPBCAct                                                       | Y        | Y                |  |
| 4.2 Communities/ assemblages        | 4.2.1    | Conservation status of wetland Regional<br>Ecosystems – Herbarium biodiversity status,<br>NCAct, EPBCAct                                        | Y        | Y                |  |
| 5 Priority species and ecosystems   |          |                                                                                                                                                 |          |                  |  |
| 5.1 Species                         | 5.1.1    | Presence of aquatic ecosystem dependent<br>'priority' fauna species (expert panel<br>list/discussion or other lists such as ASFB, WWF,<br>etc)  | Y        | Y                |  |
|                                     | 5.1.2    | Presence of aquatic ecosystem dependent<br>'priority' flora species                                                                             | Y        | Y                |  |
|                                     | 5.1.3    | Habitat for, or presence of, migratory species<br>(expert panel list/discussion and/or JAMBA /<br>CAMBA agreement lists and/or Bonn Convention) | Y        | Y                |  |
|                                     | 5.1.4    | Habitat for significant numbers of waterbirds                                                                                                   | Y        | Y                |  |

| Criteria and Indicators                 | Measures |                                                                                                                                                                                                                                                                               | Riverine | Non-<br>riverine |
|-----------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|
| 5.2 Ecosystems                          | 5.2.1    | Presence of 'priority' aquatic ecosystem                                                                                                                                                                                                                                      | Y        | Υ                |
| 6 Special features                      |          |                                                                                                                                                                                                                                                                               |          |                  |
| 6.1 Geomorphic features                 | 6.1.1    | Presence of distinct, unique or special geomorphic features                                                                                                                                                                                                                   | Y        | Y                |
| 6.2 Ecological processes                | 6.2.1    | Presence of (or requirement for) distinct, unique or special ecological processes                                                                                                                                                                                             | Y        | Y                |
| 6.3 Habitat                             | 6.3.1    | Presence of distinct, unique or special habitat<br>(including habitat that functions as refugia or other<br>critical purpose)                                                                                                                                                 | Y        | Y                |
|                                         | 6.3.2    | Significant wetlands identified by an accepted<br>method such as Ramsar, Australian Directory of<br>Important Wetlands, Regional Coastal<br>Management Planning, World Heritage Areas, etc.                                                                                   | Y        | Y                |
|                                         | 6.3.3    | Ecologically significant wetlands identified through expert opinion and/or documented study                                                                                                                                                                                   | Y        | Y                |
|                                         | 6.3.4    | Areas important as refugia from the predicted<br>effects of climate change (e.g. source of species<br>re-population)                                                                                                                                                          | Y        | Y                |
| 6.4 Hydrological                        | 6.4.1    | Presence of distinct, unique or special<br>hydrological regimes (eg. Spring fed stream,<br>ephemeral stream, boggomoss)                                                                                                                                                       | Y        | Y                |
| 7 Connectivity                          |          |                                                                                                                                                                                                                                                                               |          |                  |
| 7.1 Significant species or populations  | 7.1.2    | Migratory or routine 'passage' of fish and other<br>fully aquatic species (upstream, lateral or<br>downstream movement) within the spatial unit                                                                                                                               | Y        | Y                |
| 7.2 Groundwater dependent<br>ecosystems | 7.2.1    | The contribution (upstream or downstream) of the<br>spatial unit to the maintenance of groundwater<br>ecosystems with significant biodiversity values,<br>including those features identified through criteria<br>5 and/or 6 (e.g. karsts, cave streams, artesian<br>springs) | Y        | Y                |
| 7.5 Estuarine and marine ecosystems     | 7.5.1    | The contribution of the spatial unit to the<br>maintenance of estuarine and marine ecosystems<br>with significant biodiversity values, including those<br>features identified through criteria 5 and/or 6                                                                     | Y        | Y                |
| 8 Representativeness                    |          |                                                                                                                                                                                                                                                                               |          |                  |
| 8.1 Wetland protection                  | 8.1.1    | The percent area of each wetland type within Protected Areas.                                                                                                                                                                                                                 |          | Y                |
| 8.2 Wetland uniqueness                  | 8.2.1    | The relative abundance of the wetland<br>management group to which the wetland type<br>belongs within the catchment or study area<br>(management groups ranked least common to<br>most common)                                                                                |          | Y                |

| Criteria and Indicators | Measures |                                                                                                                                                                                                               | Riverine | Non-<br>riverine |
|-------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|
|                         | 8.2.2    | The relative abundance of the wetland<br>management group to which the wetland type<br>belongs within the sub-catchment or<br>estuarine/marine zone (management groups<br>ranked least common to most common) |          | Y                |
|                         | 8.2.3    | The size of each wetland type relative to others of<br>its management group within the catchment or<br>study area                                                                                             |          | Y                |
|                         | 8.2.4    | The size of each wetland type relative to others of its type within a sub-catchment (or estuarine zone)                                                                                                       |          | Y                |
|                         | 8.2.5    | Wetland type representative of the study area – identified by expert opinion                                                                                                                                  |          | Y                |
|                         | 8.2.6    | The size of each wetland type relative to others of its type within the catchment or study area                                                                                                               |          | Y                |